P1072 Hankson 的趣味题

原题链接  https://www.luogu.org/problemnew/show/P1072

这个题是数论+暴力吧,需要一些优化。

先来看看怎么求最大公约数和最小公倍数:

欧几里德算法 ------求最大公约数

概述

欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:
gcd函数就是用来求(a,b)的最大公约数的。
gcd函数的基本性质:
gcd(a,b)=gcd(b,a)=gcd(-a,b)=gcd(|a|,|b|)

公式表述

gcd(a,b)=gcd(b,a mod b)    
gcd(a,b)=gcd(b,a%b)    ----c++语言
证明:a可以表示成a = kb + r,则r = a mod b
假设d是a,b的一个公约数,则有d|a, d|b,而r = a - kb,因此d|r;
因此d是(b,a mod b)的公约数
假设d 是(b,a mod b)的公约数,则
d | b , d |r ,但是a = kb +r
因此d也是(a,b)的公约数
因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。
 
然后我们还有一个定理来求最小公倍数:

两个数的乘积等于其最大公约数与最小公倍数的乘积

证明:
这两数记为A,B,设gcd(A,B)=d, 那么存在整数a=A/d,b=B/d, gcd(a,b)=1
则A=ad,B=bd;
lcm(A,B)=lcm(ad,bd) ===将d提出来===>d*lcm(a,b)
因为gcd(a,b)=1(a和b互质),所以lcm(a*b)=ab,所以lcm(A,B)=dab;
gcd(A,B)*lcm(A,B)=d*dab=da*db=AB,得证。
 
这样我们就得到一个求最小公倍数的方法:lcm(a,b)=a*b/gcd(a,b);
我们就觉得暴力枚举,但也要有个上界啊,不能没完没了的枚举QwQ,因为x和b0的最小公倍数是b1,也就是说x是b1的因子,那么x一定小于等于b1,那么我们就找到了最大上界:
 
不加优化的50分代码: 
#include<iostream>
#include<cstdio>
using namespace std;
int read()
{
    char ch=getchar();
    int a=0,x=1;
    while(ch<'0'||ch>'9')
    {
        if(ch=='-') x=-x;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9')
    {
        a=(a<<3)+(a<<1)+(ch-'0');
        ch=getchar();
    }
    return x*a;
}
int t;
int a0,a1,b0,b1,ans;
int gcd(int a,int b)   //扩展欧几里得求最大公约数   
{
    if(b==0) return a;
    else return gcd(b,a%b);
}
int main()
{
    t=read();
    for(int i=1;i<=t;i++)
    {
        ans=0;
        a0=read();     //x和a0的最大公约数是a1 
        a1=read();     //gcd(x,a0)=a1
        b0=read();     //x和b0的最大公约数是b1 
        b1=read();     //x*b0=b1*gcd(x,b0)  =>  x=b1/b0*gcd(x,b0)  =>  x=b*gcd(x,b0)
        int b=b1/b0;
        for(int i=1;i<=b1;i++)
        {
            if(gcd(i,a0)==a1)
            {
                if(b*gcd(i,b0)==i) ans++;
            }
        }
        printf("%d\n",ans);
    }
    return 0;
} 

 

我们要对上面的代码进行优化:

显然我们枚举的上界b1太大了,所以我们要缩小枚举的上界!

我们再回过头来看这两个条件:

由1可以得出a1是x和a0的因子;                      (A)

由2可以得出x和b0是b1的因子;    (B)

由(B)我们可以换种枚举方式:

原先:枚举1~b1每个数    ==>   现在:枚举b1的因子 

 

优化后的代码,还是50分:

#include<iostream>
#include<cstdio>
using namespace std;
int read()
{
    char ch=getchar();
    int a=0,x=1;
    while(ch<'0'||ch>'9')
    {
        if(ch=='-') x=-x;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9')
    {
        a=(a<<3)+(a<<1)+(ch-'0');
        ch=getchar();
    }
    return x*a;
}
int t;
int a0,a1,b0,b1,ans;
int gcd(int a,int b)   //扩展欧几里得求最大公约数   
{
    if(b==0) return a;
    else return gcd(b,a%b);
}
int main()
{
    t=read();
    for(int i=1;i<=t;i++)
    {
        ans=0;
        a0=read();     //x和a0的最大公约数是a1 
        a1=read();     //gcd(x,a0)=a1
        b0=read();     //x和b0的最大公约数是b1 
        b1=read();     //x*b0=b1*gcd(x,b0)  =>  x=b1/b0*gcd(x,b0)  =>  x=b*gcd(x,b0)
        int b=b1/b0;
        for(int i=1;i<=b1;i++)
        {
            if(b1%i!=0) continue;   //如果枚举的i不是b1的因子,直接跳出 
            if(gcd(i,a0)==a1)
            {
                if(b*gcd(i,b0)==i) ans++;
            }
        }
        printf("%d\n",ans);
    }
    return 0;
} 

 

优化后的代码还不够快,我们要考虑二次优化:

考虑一下,我们已经改成枚举b1的因子了,如果当前的i是b1的因子,即 i | b1,那么此时 j =b1/ i 也一定是b1的因子,这样我们就一下得到了b1的两个因子。

我们枚举的上界也可以进一步缩小,我们只需枚举到√b1 就行了(若当前枚举的i<√b1,那么另一个因子j >√b1,所以不会漏情况);

AC代码如下:

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int read()
{
    char ch=getchar();
    int a=0,x=1;
    while(ch<'0'||ch>'9')
    {
        if(ch=='-') x=-x;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9')
    {
        a=(a<<3)+(a<<1)+(ch-'0');
        ch=getchar();
    }
    return x*a;
}
int t;
int a0,a1,b0,b1,ans;
int gcd(int a,int b)   //扩展欧几里得求最大公约数 
{
    if(b==0) return a;
    else return gcd(b,a%b);
}
int main()
{
    t=read();
    for(int i=1;i<=t;i++)
    {
        ans=0;
        a0=read();     //x和a0的最大公约数是a1 
        a1=read();     //gcd(x,a0)=a1
        b0=read();     //x和b0的最大公约数是b1 
        b1=read();     //x*b0=b1*gcd(x,b0)  =>  x=b1/b0*gcd(x,b0)  =>  x=b*gcd(x,b0)
        int b=b1/b0;
        for(int i=1;i<=sqrt(b1);i++)        //枚举b1的因数只要枚举到sqrt(b1)就行了 
            if(b1%i==0)                     //首先得是b1的因数 
               {
                   if(gcd(i,a0)==a1&&b*gcd(i,b0)==i)  ans++;   //判断是否符合条件 
                   int j=b1/i;                 //顺便得出b1的另一个因子 
                   if(i!=j)
                   {
                   if(gcd(j,a0)==a1&&b*gcd(j,b0)==j)  ans++;//判断是否符合条件 
                }
                    
               }
        printf("%d\n",ans);
    }
    return 0;
} 

 

转载于:https://www.cnblogs.com/xcg123/p/11017519.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值