Flume自定义拦截器(Interceptors)或自带拦截器时的一些经验技巧总结(图文详解)...

 

 

 

   不多说,直接上干货!

 

一、自定义拦截器类型必须是:类全名$内部类名,其实就是内部类名称
  如:zhouls.bigdata.MySearchAndReplaceInterceptor$Builder

二、为什么这样写
  至于为什么这样写:是因为Interceptor接口还有一个 公共的内部接口(Builder) ,所以自定义拦截器 要是实现 Builder接口,
  也就是实现一个内部类(该内部类的主要作用是:获取flume-conf.properties 自定义的 参数,并将参数传递给 自定义拦截器)
三、
  本人知识有限,可能描述的不太清楚,可自行了解 java接口与内部类

 

 

 

 

  由于有时候内置的拦截器不够用,所以需要针对特殊的业务需求自定义拦截器。
官方文档中没有发现自定义interceptor的步骤,但是可以根据flume源码参考内置的拦截器的代码
flume-1.7/flume-ng-core/src/main/java/org/apache/flume/interceptor/***Iterceptor.java

 

  无论,是flume的自带拦截器,还是,flume的自定义拦截器,我这篇博文呢,是想给大家,去规范和方便化!!!

 

 

 

[hadoop@master app]$ rm -rf flume
[hadoop@master app]$ ln -s flume-1.7.0/ flume
[hadoop@master app]$ ll
lrwxrwxrwx   1 hadoop hadoop   12 Jul 27 11:42 flume -> flume-1.7.0/
drwxrwxr-x   7 hadoop hadoop 4096 Apr 20 12:17 flume-1.6.0
drwxrwxr-x   7 hadoop hadoop 4096 Apr 20 12:00 flume-1.7.0

 

 

 

 

 

   Host Interceptor的应用场景是,将同一主机或服务器上的数据flume在一起。

 

   Regex Extractor Iterceptor的应用场景是,

 

 

 

 

 

 

 

 

 

这里,教大家一个非常实用的技巧,

复制代码
[hadoop@master flume-1.7.0]$ pwd
/home/hadoop/app/flume-1.7.0
[hadoop@master flume-1.7.0]$ ll
total 148
drwxr-xr-x  2 hadoop hadoop  4096 Apr 20 12:00 bin
-rw-r--r--  1 hadoop hadoop 77387 Oct 11  2016 CHANGELOG
drwxr-xr-x  2 hadoop hadoop  4096 Apr 20 12:00 conf
-rw-r--r--  1 hadoop hadoop  6172 Sep 26  2016 DEVNOTES
-rw-r--r--  1 hadoop hadoop  2873 Sep 26  2016 doap_Flume.rdf
drwxr-xr-x 10 hadoop hadoop  4096 Oct 13  2016 docs
drwxrwxr-x  2 hadoop hadoop  4096 Apr 20 12:00 lib
-rw-r--r--  1 hadoop hadoop 27625 Oct 13  2016 LICENSE
-rw-r--r--  1 hadoop hadoop   249 Sep 26  2016 NOTICE
-rw-r--r--  1 hadoop hadoop  2520 Sep 26  2016 README.md
-rw-r--r--  1 hadoop hadoop  1585 Oct 11  2016 RELEASE-NOTES
drwxrwxr-x  2 hadoop hadoop  4096 Apr 20 12:00 tools
[hadoop@master flume-1.7.0]$ cp -r conf conf_HostInterceptor
[hadoop@master flume-1.7.0]$ ll
total 152
drwxr-xr-x  2 hadoop hadoop  4096 Apr 20 12:00 bin
-rw-r--r--  1 hadoop hadoop 77387 Oct 11  2016 CHANGELOG
drwxr-xr-x  2 hadoop hadoop  4096 Apr 20 12:00 conf
drwxr-xr-x  2 hadoop hadoop  4096 Jul 27 11:59 conf_HostInterceptor
-rw-r--r--  1 hadoop hadoop  6172 Sep 26  2016 DEVNOTES
-rw-r--r--  1 hadoop hadoop  2873 Sep 26  2016 doap_Flume.rdf
drwxr-xr-x 10 hadoop hadoop  4096 Oct 13  2016 docs
drwxrwxr-x  2 hadoop hadoop  4096 Apr 20 12:00 lib
-rw-r--r--  1 hadoop hadoop 27625 Oct 13  2016 LICENSE
-rw-r--r--  1 hadoop hadoop   249 Sep 26  2016 NOTICE
-rw-r--r--  1 hadoop hadoop  2520 Sep 26  2016 README.md
-rw-r--r--  1 hadoop hadoop  1585 Oct 11  2016 RELEASE-NOTES
drwxrwxr-x  2 hadoop hadoop  4096 Apr 20 12:00 tools
[hadoop@master flume-1.7.0]$ 

 

 

复制代码
[hadoop@master flume-1.7.0]$ ll
total 152
drwxr-xr-x  2 hadoop hadoop  4096 Apr 20 12:00 bin
-rw-r--r--  1 hadoop hadoop 77387 Oct 11  2016 CHANGELOG
drwxr-xr-x  2 hadoop hadoop  4096 Apr 20 12:00 conf
drwxr-xr-x  2 hadoop hadoop  4096 Jul 27 12:01 conf_HostInterceptor
-rw-r--r--  1 hadoop hadoop  6172 Sep 26  2016 DEVNOTES
-rw-r--r--  1 hadoop hadoop  2873 Sep 26  2016 doap_Flume.rdf
drwxr-xr-x 10 hadoop hadoop  4096 Oct 13  2016 docs
drwxrwxr-x  2 hadoop hadoop  4096 Apr 20 12:00 lib
-rw-r--r--  1 hadoop hadoop 27625 Oct 13  2016 LICENSE
-rw-r--r--  1 hadoop hadoop   249 Sep 26  2016 NOTICE
-rw-r--r--  1 hadoop hadoop  2520 Sep 26  2016 README.md
-rw-r--r--  1 hadoop hadoop  1585 Oct 11  2016 RELEASE-NOTES
drwxrwxr-x  2 hadoop hadoop  4096 Apr 20 12:00 tools
[hadoop@master flume-1.7.0]$ cp -r conf conf_RegexExtractorInterceptor
[hadoop@master flume-1.7.0]$ ll
total 156
drwxr-xr-x  2 hadoop hadoop  4096 Apr 20 12:00 bin
-rw-r--r--  1 hadoop hadoop 77387 Oct 11  2016 CHANGELOG
drwxr-xr-x  2 hadoop hadoop  4096 Apr 20 12:00 conf
drwxr-xr-x  2 hadoop hadoop  4096 Jul 27 12:01 conf_HostInterceptor
drwxr-xr-x  2 hadoop hadoop  4096 Jul 27 12:03 conf_RegexExtractorInterceptor
-rw-r--r--  1 hadoop hadoop  6172 Sep 26  2016 DEVNOTES
-rw-r--r--  1 hadoop hadoop  2873 Sep 26  2016 doap_Flume.rdf
drwxr-xr-x 10 hadoop hadoop  4096 Oct 13  2016 docs
drwxrwxr-x  2 hadoop hadoop  4096 Apr 20 12:00 lib
-rw-r--r--  1 hadoop hadoop 27625 Oct 13  2016 LICENSE
-rw-r--r--  1 hadoop hadoop   249 Sep 26  2016 NOTICE
-rw-r--r--  1 hadoop hadoop  2520 Sep 26  2016 README.md
-rw-r--r--  1 hadoop hadoop  1585 Oct 11  2016 RELEASE-NOTES
drwxrwxr-x  2 hadoop hadoop  4096 Apr 20 12:00 tools
[hadoop@master flume-1.7.0]$ 
复制代码

 

 

 

 

复制代码
drwxr-xr-x  2 hadoop hadoop  4096 Apr 20 12:00 bin
-rw-r--r--  1 hadoop hadoop 77387 Oct 11  2016 CHANGELOG
drwxr-xr-x  2 hadoop hadoop  4096 Apr 20 12:00 conf
drwxr-xr-x  2 hadoop hadoop  4096 Jul 27 12:01 conf_HostInterceptor
drwxr-xr-x  2 hadoop hadoop  4096 Jul 27 12:03 conf_RegexExtractorInterceptor
-rw-r--r--  1 hadoop hadoop  6172 Sep 26  2016 DEVNOTES
-rw-r--r--  1 hadoop hadoop  2873 Sep 26  2016 doap_Flume.rdf
drwxr-xr-x 10 hadoop hadoop  4096 Oct 13  2016 docs
drwxrwxr-x  2 hadoop hadoop  4096 Apr 20 12:00 lib
-rw-r--r--  1 hadoop hadoop 27625 Oct 13  2016 LICENSE
-rw-r--r--  1 hadoop hadoop   249 Sep 26  2016 NOTICE
-rw-r--r--  1 hadoop hadoop  2520 Sep 26  2016 README.md
-rw-r--r--  1 hadoop hadoop  1585 Oct 11  2016 RELEASE-NOTES
drwxrwxr-x  2 hadoop hadoop  4096 Apr 20 12:00 tools
[hadoop@master flume-1.7.0]$ cp -r conf conf_SearchandReplaceInterceptor
[hadoop@master flume-1.7.0]$ ll
total 160
drwxr-xr-x  2 hadoop hadoop  4096 Apr 20 12:00 bin
-rw-r--r--  1 hadoop hadoop 77387 Oct 11  2016 CHANGELOG
drwxr-xr-x  2 hadoop hadoop  4096 Apr 20 12:00 conf
drwxr-xr-x  2 hadoop hadoop  4096 Jul 27 12:01 conf_HostInterceptor
drwxr-xr-x  2 hadoop hadoop  4096 Jul 27 12:03 conf_RegexExtractorInterceptor
drwxr-xr-x  2 hadoop hadoop  4096 Jul 27 12:04 conf_SearchandReplaceInterceptor
-rw-r--r--  1 hadoop hadoop  6172 Sep 26  2016 DEVNOTES
-rw-r--r--  1 hadoop hadoop  2873 Sep 26  2016 doap_Flume.rdf
drwxr-xr-x 10 hadoop hadoop  4096 Oct 13  2016 docs
drwxrwxr-x  2 hadoop hadoop  4096 Apr 20 12:00 lib
-rw-r--r--  1 hadoop hadoop 27625 Oct 13  2016 LICENSE
-rw-r--r--  1 hadoop hadoop   249 Sep 26  2016 NOTICE
-rw-r--r--  1 hadoop hadoop  2520 Sep 26  2016 README.md
-rw-r--r--  1 hadoop hadoop  1585 Oct 11  2016 RELEASE-NOTES
drwxrwxr-x  2 hadoop hadoop  4096 Apr 20 12:00 tools
[hadoop@master flume-1.7.0]$ 

 

  

  大家,想必,很想问,为什么要这么cp复制出来呢?如flume的以下3种重要的自带拦截器???

cp -r conf conf_HostInterceptor
cp -r conf conf_SearchandReplaceInterceptor
cp -r conf conf_RegexExtractorInterceptor

 

 

 

  你想啊,若不复制的话,则我们在使用时,则会不方便管理。尤其是,见如下,共用同一个log4j.properties,日志排查起来一点都不方便!!!

 

  

  而,现在是

 

 

 

 

   这样做下来,就是非常的方便和正规。

 
 

 

 

 

  同时,大家,还要如下更改下

[hadoop@master conf_HostInterceptor]$ pwd
/home/hadoop/app/flume-1.7.0/conf_HostInterceptor
[hadoop@master conf_HostInterceptor]$ ll
total 16
-rw-r--r-- 1 hadoop hadoop 1661 Jul 27 12:01 flume-conf.properties.template
-rw-r--r-- 1 hadoop hadoop 1455 Jul 27 12:01 flume-env.ps1.template
-rw-r--r-- 1 hadoop hadoop 1565 Jul 27 12:01 flume-env.sh.template
-rw-r--r-- 1 hadoop hadoop 3107 Jul 27 12:01 log4j.properties
[hadoop@master conf_HostInterceptor]$ mv flume-conf.properties.template flume-conf.properties
[hadoop@master conf_HostInterceptor]$ vim log4j.properties 

 

 

 

 

 

 

 

 

#flume.root.logger=DEBUG,console
flume.root.logger=INFO,LOGFILE
flume.log.dir=./logs
flume.log.file=flume_HostInterceptor.log

 

 

   同理

[hadoop@master conf_RegexExtractorInterceptor]$ pwd
/home/hadoop/app/flume-1.7.0/conf_RegexExtractorInterceptor
[hadoop@master conf_RegexExtractorInterceptor]$ ll
total 16
-rw-r--r-- 1 hadoop hadoop 1661 Jul 27 12:03 flume-conf.properties.template
-rw-r--r-- 1 hadoop hadoop 1455 Jul 27 12:03 flume-env.ps1.template
-rw-r--r-- 1 hadoop hadoop 1565 Jul 27 12:03 flume-env.sh.template
-rw-r--r-- 1 hadoop hadoop 3107 Jul 27 12:03 log4j.properties
[hadoop@master conf_RegexExtractorInterceptor]$ mv flume-conf.properties.template flume-conf.properties
[hadoop@master conf_RegexExtractorInterceptor]$ vim log4j.properties 

 

 

 

#flume.root.logger=DEBUG,console
flume.root.logger=INFO,LOGFILE
flume.log.dir=./logs
flume.log.file=flume_RegexExtractorInterceptor.log

 

 

 

 

  同理

[hadoop@master conf_SearchandReplaceInterceptor]$ pwd
/home/hadoop/app/flume-1.7.0/conf_SearchandReplaceInterceptor
[hadoop@master conf_SearchandReplaceInterceptor]$ ll
total 16
-rw-r--r-- 1 hadoop hadoop 1661 Jul 27 12:04 flume-conf.properties.template
-rw-r--r-- 1 hadoop hadoop 1455 Jul 27 12:04 flume-env.ps1.template
-rw-r--r-- 1 hadoop hadoop 1565 Jul 27 12:04 flume-env.sh.template
-rw-r--r-- 1 hadoop hadoop 3107 Jul 27 12:04 log4j.properties
[hadoop@master conf_SearchandReplaceInterceptor]$ mv flume-conf.properties.template flume-conf.properties
[hadoop@master conf_SearchandReplaceInterceptor]$ vim log4j.properties 

 

 

 

#flume.root.logger=DEBUG,console
flume.root.logger=INFO,LOGFILE
flume.log.dir=./logs
flume.log.file=flume_SearchandReplaceInterceptor.log

 

 

 

 

 

 

Host Interceptor

  conf_HostInterceptor的flume-conf.properties

agent1.sources = r1
agent1.sinks = k1
agent1.channels = c1

# Describe/configure the source
agent1.sources.r1.type = netcat
agent1.sources.r1.bind = localhost
agent1.sources.r1.port = 44444



agent1.sources.r1.interceptors = i1
agent1.sources.r1.interceptors.i1.type = host
agent1.sources.r1.interceptors.i1.hostHeader = hostname


# Use a channel which buffers events in memory
agent1.channels.c1.type = memory
agent1.channels.c1.capacity = 1
agent1.channels.c1.transactionCapacity = 1

# Bind the source and sink to the channel
agent1.sources.r1.channels = c1
agent1.sinks.k1.channel = c1

# Describe the sink
agent1.sinks.k1.type = logger

 

 

 

则,注意,启动命令也要发生变化

[hadoop@master flume-1.7.0]$ bin/flume-ng agent --conf conf_HostInterceptor/  --conf-file conf_HostInterceptor/flume-conf.properties --name agent1  -Dflume.root.logger=INFO,console

 

 

SLF4J: Found binding in [jar:file:/home/hadoop/app/hbase-0.98.19/lib/slf4j-log4j12-1.6.4.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/hadoop/app/hive-1.0.0/lib/hive-jdbc-1.0.0-standalone.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
2017-07-27 12:41:49,451 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.node.PollingPropertiesFileConfigurationProvider.start(PollingPropertiesFileConfigurationProvider.java:62)] Configuration provider starting
2017-07-27 12:41:50,137 (conf-file-poller-0) [INFO - org.apache.flume.node.PollingPropertiesFileConfigurationProvider$FileWatcherRunnable.run(PollingPropertiesFileConfigurationProvider.java:134)] Reloading configuration file:conf_HostInterceptor/flume-conf.properties
2017-07-27 12:41:50,188 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:1016)] Processing:k1
2017-07-27 12:41:50,189 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:1016)] Processing:k1 2017-07-27 12:41:50,189 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:930)] Added sinks: k1 Agent: agent1 2017-07-27 12:41:50,280 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration.validateConfiguration(FlumeConfiguration.java:140)] Post-validation flume configuration contains configuration for agents: [agent1] 2017-07-27 12:41:50,280 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.loadChannels(AbstractConfigurationProvider.java:147)] Creating channels 2017-07-27 12:41:50,337 (conf-file-poller-0) [INFO - org.apache.flume.channel.DefaultChannelFactory.create(DefaultChannelFactory.java:42)] Creating instance of channel c1 type memory 2017-07-27 12:41:50,423 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.loadChannels(AbstractConfigurationProvider.java:201)] Created channel c1 2017-07-27 12:41:50,425 (conf-file-poller-0) [INFO - org.apache.flume.source.DefaultSourceFactory.create(DefaultSourceFactory.java:41)] Creating instance of source r1, type netcat 2017-07-27 12:41:51,478 (conf-file-poller-0) [INFO - org.apache.flume.sink.DefaultSinkFactory.create(DefaultSinkFactory.java:42)] Creating instance of sink: k1, type: logger 2017-07-27 12:41:51,490 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.getConfiguration(AbstractConfigurationProvider.java:116)] Channel c1 connected to [r1, k1] 2017-07-27 12:41:52,050 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:137)] Starting new configuration:{ sourceRunners:{r1=EventDrivenSourceRunner: { source:org.apache.flume.source.NetcatSource{name:r1,state:IDLE} }} sinkRunners:{k1=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@13f948e counterGroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.MemoryChannel{name: c1}} } 2017-07-27 12:41:52,052 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:144)] Starting Channel c1 2017-07-27 12:41:53,484 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.register(MonitoredCounterGroup.java:119)] Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean. 2017-07-27 12:41:53,517 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.start(MonitoredCounterGroup.java:95)] Component type: CHANNEL, name: c1 started 2017-07-27 12:41:53,522 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:171)] Starting Sink k1 2017-07-27 12:41:53,524 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:182)] Starting Source r1 2017-07-27 12:41:53,531 (lifecycleSupervisor-1-3) [INFO - org.apache.flume.source.NetcatSource.start(NetcatSource.java:155)] Source starting 2017-07-27 12:41:54,384 (lifecycleSupervisor-1-3) [INFO - org.apache.flume.source.NetcatSource.start(NetcatSource.java:169)] Created serverSocket:sun.nio.ch.ServerSocketChannelImpl[/127.0.0.1:44444]

  等待数据的采集

 

 

 

 

 

[hadoop@master ~]$ yum -y install telnet
Loaded plugins: fastestmirror, refresh-packagekit, security
You need to be root to perform this command.
[hadoop@master ~]$ su root
Password: 
[root@master hadoop]# yum -y install telnet
Loaded plugins: fastestmirror, refresh-packagekit, security Loading mirror speeds from cached hostfile * base: mirrors.cqu.edu.cn * extras: mirrors.sohu.com

 

 

 

 

  成功地,然后,这边随便输入什么。比如hello

 

[root@master ~]# telnet localhost 44444
Trying ::1...
telnet: connect to address ::1: Connection refused
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
hello
OK

 

 

 

 

Event: { headers:{hostname=192.168.80.145} body: 68 65 6C 6C 6F 0D                               hello. }

 

 

  这就是Host Interceptor的作用体现!

agent1.sources.r1.interceptors = i1
agent1.sources.r1.interceptors.i1.type = host
agent1.sources.r1.interceptors.i1.hostHeader = hostname

 

 

  若想要如下的效果,则

Event: { headers:{hostname=master} body: 7A 68 6F 75 6C 73 0D                            zhouls. }

 

  则

 

agent1.sources = r1
agent1.sinks = k1
agent1.channels = c1

# Describe/configure the source
agent1.sources.r1.type = netcat
agent1.sources.r1.bind = localhost
agent1.sources.r1.port = 44444



agent1.sources.r1.interceptors = i1
agent1.sources.r1.interceptors.i1.type = host
agent1.sources.r1.interceptors.i1.useIP = false
agent1.sources.r1.interceptors.i1.hostHeader = hostname


# Use a channel which buffers events in memory
agent1.channels.c1.type = memory
agent1.channels.c1.capacity = 1
agent1.channels.c1.transactionCapacity = 1

# Bind the source and sink to the channel
agent1.sources.r1.channels = c1
agent1.sinks.k1.channel = c1

# Describe the sink
agent1.sinks.k1.type = logger

 

 

 

[hadoop@master flume-1.7.0]$ bin/flume-ng agent --conf conf_HostInterceptor/  --conf-file conf_HostInterceptor/flume-conf.properties --name agent1  -Dflume.root.logger=INFO,console

 

 

 

 

 

 

[root@master ~]# telnet localhost 44444
Trying ::1...
telnet: connect to address ::1: Connection refused
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
zhouls
OK

 

 

 

 

 

Event: { headers:{hostname=master} body: 7A 68 6F 75 6C 73 0D                            zhouls. }

 

 

 

 

 

 

Regex Extractor Interceptor(正则抽取拦截器)

  conf_RegexExtractorInterceptor的flume-conf.properties

[hadoop@master conf_RegexExtractorInterceptor]$ pwd
/home/hadoop/app/flume-1.7.0/conf_RegexExtractorInterceptor
[hadoop@master conf_RegexExtractorInterceptor]$ ll
total 16
-rw-r--r-- 1 hadoop hadoop 1661 Jul 27 12:03 flume-conf.properties
-rw-r--r-- 1 hadoop hadoop 1455 Jul 27 12:03 flume-env.ps1.template
-rw-r--r-- 1 hadoop hadoop 1565 Jul 27 12:03 flume-env.sh.template
-rw-r--r-- 1 hadoop hadoop 3133 Jul 27 12:31 log4j.properties
[hadoop@master conf_RegexExtractorInterceptor]$ vim flume-conf.properties 

 

 

  首先,我们来说说这个拦截器的应用场景  

   假设,有如下的flume测试数据

video_info

{"id":"14943445328940974601","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"}
{"id":"14943445328940974602","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"}
{"id":"14943445328940974603","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"}
{"id":"14943445328940974604","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"}
{"id":"14943445328940974605","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"}
{"id":"14943445328940974606","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"}
{"id":"14943445328940974607","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"}
{"id":"14943445328940974608","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"}
{"id":"14943445328940974609","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"}
{"id":"14943445328940974610","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hots":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","replay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"}



userinfo

{"uid":"861848974414839801","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"}
{"uid":"861848974414839802","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"}
{"uid":"861848974414839803","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"}
{"uid":"861848974414839804","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"}
{"uid":"861848974414839805","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"}
{"uid":"861848974414839806","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"}
{"uid":"861848974414839807","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"}
{"uid":"861848974414839808","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"}
{"uid":"861848974414839809","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"}
{"uid":"861848974414839810","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_face":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"userinfo"}




gift_record

{"send_id":"834688818270961664","good_id":"223","video_id":"14943443045138661356","gold":"10","timestamp":1494344574,"type":"gift_record"}
{"send_id":"829622867955417088","good_id":"72","video_id":"14943429572096925829","gold":"4","timestamp":1494344574,"type":"gift_record"}
{"send_id":"827187230564286464","good_id":"193","video_id":"14943394752706070833","gold":"6","timestamp":1494344574,"type":"gift_record"}
{"send_id":"829622867955417088","good_id":"80","video_id":"14943429572096925829","gold":"6","timestamp":1494344574,"type":"gift_record"}
{"send_id":"799051982152663040","good_id":"72","video_id":"14943435528719800690","gold":"4","timestamp":1494344574,"type":"gift_record"}
{"send_id":"848799149716930560","good_id":"72","video_id":"14943435528719800690","gold":"4","timestamp":1494344574,"type":"gift_record"}
{"send_id":"775251729037262848","good_id":"777","video_id":"14943390379833490630","gold":"5","timestamp":1494344574,"type":"gift_record"}
{"send_id":"835670464000425984","good_id":"238","video_id":"14943428496217015696","gold":"2","timestamp":1494344574,"type":"gift_record"}
{"send_id":"834688818270961664","good_id":"223","video_id":"14943443045138661356","gold":"10","timestamp":1494344574,"type":"gift_record"}
{"send_id":"834688818270961664","good_id":"223","video_id":"14943443045138661356","gold":"10","timestamp":1494344574,"type":"gift_record"}

 

 

  以上是flume采集后的数据。假设都是在这个flume测试数据.txt里,现在呢,我想按照type来存放到不同的目录下。

  即video_info的存放到video_info目录下、userinfo的存放到userinfo目录下、gift_record的存放到gift_record目录下。

  则,这样的应用场景,即根据数据里内容的type字段的值的不同,来分别存储。则需要Regex Extractor Interceptor派上用场了。

 

   怎么做呢,其实很简单,把type的值,放到

# 定义拦截器
agent1.sources.r1.interceptors = i1
# 设置拦截器类型
agent1.sources.r1.interceptors.i1.type = regex_extractor
# 设置正则表达式,匹配指定的数据,这样设置会在数据的header中增加log_type=”对应的值”
agent1.sources.r1.interceptors.i1.regex = "type":"(\\w+)"
agent1.sources.r1.interceptors.i1.serializers = s1
agent1.sources.r1.interceptors.i1.serializers.s1.name = log_type

 

 

  为什么是这么来写?

agent1.sources.r1.interceptors.i1.regex = "type":"(\\w+)"

 

  是因为数据的内容决定的。

"type":"video_info"


"type":"userinfo"


"type":"gift_record"

 

 

 

#source的名字
agent1.sources = fileSource
# channels的名字,建议按照type来命名
agent1.channels = memoryChannel
# sink的名字,建议按照目标来命名
agent1.sinks = hdfsSink

# 指定source使用的channel名字
agent1.sources.fileSource.channels = memoryChannel
# 指定sink需要使用的channel的名字,注意这里是channel
agent1.sinks.hdfsSink.channel = memoryChannel


agent1.sources.fileSource.type = exec
agent1.sources.fileSource.command = tail -F /usr/local/log/server.log



#------- fileChannel-1相关配置-------------------------
# channel类型

agent1.channels.memoryChannel.type = memory
agent1.channels.memoryChannel.capacity = 1000
agent1.channels.memoryChannel.transactionCapacity = 1000
agent1.channels.memoryChannel.byteCapacityBufferPercentage = 20
agent1.channels.memoryChannel.byteCapacity = 800000


#---------拦截器相关配置------------------
# 定义拦截器
agent1.sources.fileSource.interceptors = i1
# 设置拦截器类型
agent1.sources.fileSource.interceptors.i1.type = regex_extractor
# 设置正则表达式,匹配指定的数据,这样设置会在数据的header中增加log_type="某个值"
agent1.sources.fileSource.interceptors.i1.regex = "type":"(\\w+)"
agent1.sources.fileSource.interceptors.i1.serializers = s1
agent1.sources.fileSource.interceptors.i1.serializers.s1.name = log_type




#---------hdfsSink 相关配置------------------
agent1.sinks.hdfsSink.type = hdfs
# 注意, 我们输出到下面一个子文件夹datax中
agent1.sinks.hdfsSink.hdfs.path = hdfs://master:9000/data/types/%Y%m%d/%{log_type}
agent1.sinks.hdfsSink.hdfs.writeFormat = Text
agent1.sinks.hdfsSink.hdfs.fileType = DataStream
agent1.sinks.hdfsSink.hdfs.callTimeout = 3600000
agent1.sinks.hdfsSink.hdfs.useLocalTimeStamp = true

#当文件大小为52428800字节时,将临时文件滚动成一个目标文件
agent1.sinks.hdfsSink.hdfs.rollSize = 52428800
#events数据达到该数量的时候,将临时文件滚动成目标文件
agent1.sinks.hdfsSink.hdfs.rollCount = 0
#每隔N s将临时文件滚动成一个目标文件
agent1.sinks.hdfsSink.hdfs.rollInterval = 1200

#配置前缀和后缀
agent1.sinks.hdfsSink.hdfs.filePrefix=run
agent1.sinks.hdfsSink.hdfs.fileSuffix=.data

 

 

  监控文件是在

/usr/local/log/server.log

 

[root@master local]# pwd
/usr/local
[root@master local]# ll
total 40
drwxr-xr-x. 2 root root 4096 Sep 23  2011 bin
drwxr-xr-x. 2 root root 4096 Sep 23  2011 etc
drwxr-xr-x. 2 root root 4096 Sep 23  2011 games
drwxr-xr-x. 2 root root 4096 May  1 19:40 include
drwxr-xr-x. 2 root root 4096 May  1 19:40 lib
drwxr-xr-x. 2 root root 4096 Sep 23  2011 lib64
drwxr-xr-x. 2 root root 4096 Sep 23  2011 libexec
drwxr-xr-x. 2 root root 4096 Sep 23  2011 sbin
drwxr-xr-x. 6 root root 4096 May  1 19:40 share
drwxr-xr-x. 2 root root 4096 Sep 23  2011 src
[root@master local]# mkdir log
[root@master local]# cd log
[root@master log]# pwd
/usr/local/log
[root@master log]# ll
total 0
[root@master log]# 

 

 

 

 

 

 

 

  然后,执行

[hadoop@master flume-1.7.0]$ bin/flume-ng agent --conf conf_RegexExtractorInterceptor/  --conf-file conf_RegexExtractorInterceptor/flume-conf.properties --name agent1  -Dflume.root.logger=INFO,console

 

 

 

 

 

 

  然后,我这边,采用如下的一个shell脚本来模拟产生测试数据。

  producerLog.sh

 

 

[root@master log]# pwd
/usr/local/log
[root@master log]# ll
total 0
[root@master log]# vim producerLog.sh

 

 

 

 

 

#!/bin/bash
log1='{"id":"14943445328940974610","uid":"840717325115457536","lat":"53.530598","lnt":"-2.5620373","hot
s":0,"title":"0","status":"1","topicId":"0","end_time":"1494344570","watch_num":0,"share_num":"1","repl
ay_url":null,"replay_num":0,"start_time":"1494344544","timestamp":1494344571,"type":"video_info"}'

log2='{"uid":"861848974414839810","nickname":"mick","usign":"","sex":1,"birthday":"","face":"","big_fac
e":"","email":"abc@qq.com","mobile":"","reg_type":"102","last_login_time":"1494344580","reg_time":"1494
344580","last_update_time":"1494344580","status":"5","is_verified":"0","verified_info":"","is_seller":"
0","level":1,"exp":0,"anchor_level":0,"anchor_exp":0,"os":"android","timestamp":1494344580,"type":"user_info"}'


log3='{"send_id":"834688818270961664","good_id":"223","video_id":"14943443045138661356","gold":"10","ti
mestamp":1494344574,"type":"gift_record"}'


declare -i count

count=0
while [ 'a' = 'a' ]
do
echo -e $log1 >> /usr/local/log/server.log
echo -e $log2 >> /usr/local/log/server.log
echo -e $log3 >> /usr/local/log/server.log
count+=1
    if [ ${count} -eq 500 ]
    then
    count=0
    echo "sleep..."
    sleep 3
    fi
done

   这个shell脚本不太难哈。即log1会生成500条、log2会生成500条、log3会生成500条。每隔3秒。

 

   然后,再来创建server.log文件

[root@master log]# pwd
/usr/local/log
[root@master log]# ll
total 4
-rw-r--r-- 1 root root 1157 Jul 27 14:39 producerLog.sh
[root@master log]# vim producerLog.sh 
[root@master log]# touch server.log
[root@master log]# ll
total 4
-rw-r--r-- 1 root root 1157 Jul 27 14:42 producerLog.sh
-rw-r--r-- 1 root root    0 Jul 27 14:43 server.log
[root@master log]# cat server.log 
[root@master log]# 

 

 

   

  然后,来执行这个脚本,以模拟产生数据。

[root@master log]# pwd
/usr/local/log
[root@master log]# ll
total 4
-rw-r--r-- 1 root root 1157 Jul 27 14:42 producerLog.sh
-rw-r--r-- 1 root root    0 Jul 27 14:43 server.log
[root@master log]# chmod 755 producerLog.sh 
[root@master log]# ll
total 4
-rwxr-xr-x 1 root root 1157 Jul 27 14:42 producerLog.sh
-rw-r--r-- 1 root root    0 Jul 27 14:43 server.log
[root@master log]# ./producerLog.sh

 

 

 

 

 

2017-07-27 14:46:42,275 (SinkRunner-PollingRunner-DefaultSinkProcessor) [WARN - org.apache.flume.sink.hdfs.BucketWriter.append(BucketWriter.java:521)] Block Under-replication detected. Rotating file.
2017-07-27 14:46:42,279 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.close(BucketWriter.java:357)] Closing hdfs://master:9000/data/types/20170727//run.1501137914366.data.tmp
2017-07-27 14:46:43,117 (hdfs-hdfsSink-call-runner-9) [INFO - org.apache.flume.sink.hdfs.BucketWriter$8.call(BucketWriter.java:618)] Renaming hdfs://master:9000/data/types/20170727/run.1501137914366.data.tmp to hdfs://master:9000/data/types/20170727/run.1501137914366.data
2017-07-27 14:46:43,429 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:231)] Creating hdfs://master:9000/data/types/20170727//run.1501137914367.data.tmp
2017-07-27 14:46:45,017 (SinkRunner-PollingRunner-DefaultSinkProcessor) [WARN - org.apache.flume.sink.hdfs.BucketWriter.append(BucketWriter.java:521)] Block Under-replication detected. Rotating file.
2017-07-27 14:46:45,017 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.close(BucketWriter.java:357)] Closing hdfs://master:9000/data/types/20170727/video_info/run.1501137883920.data.tmp
2017-07-27 14:46:45,091 (hdfs-hdfsSink-call-runner-0) [INFO - org.apache.flume.sink.hdfs.BucketWriter$8.call(BucketWriter.java:618)] Renaming hdfs://master:9000/data/types/20170727/video_info/run.1501137883920.data.tmp to hdfs://master:9000/data/types/20170727/video_info/run.1501137883920.data
2017-07-27 14:46:45,236 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:231)] Creating hdfs://master:9000/data/types/20170727/video_info/run.1501137883921.data.tmp
2017-07-27 14:46:45,412 (SinkRunner-PollingRunner-DefaultSinkProcessor) [WARN - org.apache.flume.sink.hdfs.BucketWriter.append(BucketWriter.java:521)] Block Under-replication detected. Rotating file.
2017-07-27 14:46:45,412 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.close(BucketWriter.java:357)] Closing hdfs://master:9000/data/types/20170727//run.1501137914367.data.tmp
2017-07-27 14:46:45,455 (hdfs-hdfsSink-call-runner-7) [INFO - org.apache.flume.sink.hdfs.BucketWriter$8.call(BucketWriter.java:618)] Renaming hdfs://master:9000/data/types/20170727/run.1501137914367.data.tmp to hdfs://master:9000/data/types/20170727/run.1501137914367.data
2017-07-27 14:46:45,585 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:231)] Creating hdfs://master:9000/data/types/20170727//run.1501137914368.data.tmp
2017-07-27 14:46:45,942 (SinkRunner-PollingRunner-DefaultSinkProcessor) [WARN - org.apache.flume.sink.hdfs.BucketWriter.append(BucketWriter.java:521)] Block Under-replication detected. Rotating file.
2017-07-27 14:46:45,942 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.close(BucketWriter.java:357)] Closing hdfs://master:9000/data/types/20170727/gift_record/run.1501137916399.data.tmp
2017-07-27 14:46:46,074 (hdfs-hdfsSink-call-runner-4) [INFO - org.apache.flume.sink.hdfs.BucketWriter$8.call(BucketWriter.java:618)] Renaming hdfs://master:9000/data/types/20170727/gift_record/run.1501137916399.data.tmp to hdfs://master:9000/data/types/20170727/gift_record/run.1501137916399.data
2017-07-27 14:46:46,138 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:231)] Creating hdfs://master:9000/data/types/20170727/gift_record/run.1501137916400.data.tmp

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Search and Replace  Interceptor

  以上存放,是在

  模拟产生的gift_record是存放在 /data/types/20170727/gift_record

 

  但是呢。我现在需求是

  模拟产生的gift_record是存放在 /data/types/20170727/giftRecord

 

 

  则改为

agent1.sources.r1.interceptors = i1 i2 i3 i4
agent1.sources.r1.interceptors.i1.type = search_replace
agent1.sources.r1.interceptors.i1.searchPattern = "type":"gift_record"
agent1.sources.r1.interceptors.i1.replaceString = "type":"giftRecord"


agent1.sources.r1.interceptors.i2.type = search_replace
agent1.sources.r1.interceptors.i2.searchPattern = "type":"video_info"
agent1.sources.r1.interceptors.i2.replaceString = "type":"videoInfo"


agent1.sources.r1.interceptors.i3.type = search_replace
agent1.sources.r1.interceptors.i3.searchPattern = "type":"user_info"
agent1.sources.r1.interceptors.i3.replaceString = "type":"userInfo"



agent1.sources.fileSource.interceptors.i4.type = regex_extractor
agent1.sources.fileSource.interceptors.i4.regex = "type":"(\\w+)"
agent1.sources.fileSource.interceptors.i4.serializers = s1
agent1.sources.fileSource.interceptors.i4.serializers.s1.name = log_type

 

 

 

[hadoop@master conf_SearchandReplaceInterceptor]$ pwd
/home/hadoop/app/flume-1.7.0/conf_SearchandReplaceInterceptor
[hadoop@master conf_SearchandReplaceInterceptor]$ ll
total 16
-rw-r--r-- 1 hadoop hadoop 1661 Jul 27 12:04 flume-conf.properties
-rw-r--r-- 1 hadoop hadoop 1455 Jul 27 12:04 flume-env.ps1.template
-rw-r--r-- 1 hadoop hadoop 1565 Jul 27 12:04 flume-env.sh.template
-rw-r--r-- 1 hadoop hadoop 3135 Jul 27 12:32 log4j.properties
[hadoop@master conf_SearchandReplaceInterceptor]$ vim flume-conf.properties 

 

 

 

#source的名字
agent1.sources = fileSource
# channels的名字,建议按照type来命名
agent1.channels = memoryChannel
# sink的名字,建议按照目标来命名
agent1.sinks = hdfsSink

# 指定source使用的channel名字
agent1.sources.fileSource.channels = memoryChannel
# 指定sink需要使用的channel的名字,注意这里是channel
agent1.sinks.hdfsSink.channel = memoryChannel


agent1.sources.fileSource.type = exec
agent1.sources.fileSource.command = tail -F /usr/local/log/server.log



#------- fileChannel-1相关配置-------------------------
# channel类型

agent1.channels.memoryChannel.type = memory
agent1.channels.memoryChannel.capacity = 1000
agent1.channels.memoryChannel.transactionCapacity = 1000
agent1.channels.memoryChannel.byteCapacityBufferPercentage = 20
agent1.channels.memoryChannel.byteCapacity = 800000


#---------拦截器相关配置------------------

agent1.sources.r1.interceptors = i1 i2 i3 i4
agent1.sources.r1.interceptors.i1.type = search_replace
agent1.sources.r1.interceptors.i1.searchPattern = "type":"gift_record"
agent1.sources.r1.interceptors.i1.replaceString = "type":"giftRecord"


agent1.sources.r1.interceptors.i2.type = search_replace
agent1.sources.r1.interceptors.i2.searchPattern = "type":"video_info"
agent1.sources.r1.interceptors.i2.replaceString = "type":"videoInfo"


agent1.sources.r1.interceptors.i3.type = search_replace
agent1.sources.r1.interceptors.i3.searchPattern = "type":"user_info"
agent1.sources.r1.interceptors.i3.replaceString = "type":"userInfo"


agent1.sources.fileSource.interceptors.i4.type = regex_extractor agent1.sources.fileSource.interceptors.i4.regex = "type":"(\\w+)" agent1.sources.fileSource.interceptors.i4.serializers = s1 agent1.sources.fileSource.interceptors.i4.serializers.s1.name = log_type #---------hdfsSink 相关配置------------------ agent1.sinks.hdfsSink.type = hdfs # 注意, 我们输出到下面一个子文件夹datax中 agent1.sinks.hdfsSink.hdfs.path = hdfs://master:9000/data/types/%Y%m%d/%{log_type} agent1.sinks.hdfsSink.hdfs.writeFormat = Text agent1.sinks.hdfsSink.hdfs.fileType = DataStream agent1.sinks.hdfsSink.hdfs.callTimeout = 3600000 agent1.sinks.hdfsSink.hdfs.useLocalTimeStamp = true #当文件大小为52428800字节时,将临时文件滚动成一个目标文件 agent1.sinks.hdfsSink.hdfs.rollSize = 52428800 #events数据达到该数量的时候,将临时文件滚动成目标文件 agent1.sinks.hdfsSink.hdfs.rollCount = 0 #每隔N s将临时文件滚动成一个目标文件 agent1.sinks.hdfsSink.hdfs.rollInterval = 1200 #配置前缀和后缀 agent1.sinks.hdfsSink.hdfs.filePrefix=run agent1.sinks.hdfsSink.hdfs.fileSuffix=.data

 

 

 

  然后,执行

[hadoop@master flume-1.7.0]$ bin/flume-ng agent --conf conf_SearchandReplaceInterceptor/  --conf-file conf_SearchandReplaceInterceptor/flume-conf.properties --name agent1  -Dflume.root.logger=INFO,console

 

 

 

 

 

 

  我这里,出现了这个错误

2017-07-29 10:17:51,006 (lifecycleSupervisor-1-2) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.start(MonitoredCounterGroup.java:95)] Component type: SOURCE, name: fileSource started
2017-07-29 10:17:52,792 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.HDFSDataStream.configure(HDFSDataStream.java:57)] Serializer = TEXT, UseRawLocalFileSystem = false
2017-07-29 10:17:55,094 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:231)] Creating hdfs://master:9000/data/types/20170729//run.1501294672792.data.tmp
2017-07-29 10:17:55,842 (hdfs-hdfsSink-call-runner-0) [WARN - org.apache.hadoop.util.NativeCodeLoader.<clinit>(NativeCodeLoader.java:62)] Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2017-07-29 10:18:00,495 (pool-5-thread-1) [ERROR - org.apache.flume.source.ExecSource$ExecRunnable.run(ExecSource.java:352)] Failed while running command: tail -F /usr/local/log/server.log
org.apache.flume.ChannelFullException: Space for commit to queue couldn't be acquired. Sinks are likely not keeping up with sources, or the buffer size is too tight
    at org.apache.flume.channel.MemoryChannel$MemoryTransaction.doCommit(MemoryChannel.java:127)
    at org.apache.flume.channel.BasicTransactionSemantics.commit(BasicTransactionSemantics.java:151)
    at org.apache.flume.channel.ChannelProcessor.processEventBatch(ChannelProcessor.java:194)
    at org.apache.flume.source.ExecSource$ExecRunnable.flushEventBatch(ExecSource.java:381)
    at org.apache.flume.source.ExecSource$ExecRunnable.run(ExecSource.java:341)
    at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
2017-07-29 10:18:00,544 (timedFlushExecService21-0) [ERROR - org.apache.flume.source.ExecSource$ExecRunnable$1.run(ExecSource.java:327)] Exception occured when processing event batch
org.apache.flume.ChannelException: java.lang.InterruptedException
    at org.apache.flume.channel.BasicTransactionSemantics.commit(BasicTransactionSemantics.java:154)
    at org.apache.flume.channel.ChannelProcessor.processEventBatch(ChannelProcessor.java:194)
    at org.apache.flume.source.ExecSource$ExecRunnable.flushEventBatch(ExecSource.java:381)
    at org.apache.flume.source.ExecSource$ExecRunnable.access$100(ExecSource.java:254)
    at org.apache.flume.source.ExecSource$ExecRunnable$1.run(ExecSource.java:323)
    at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
    at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308)
    at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180)
    at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294)

 

 

 

 

 

   然后,这边模拟产生数据。

[root@master log]# pwd
/usr/local/log
[root@master log]# ll
total 4
-rwxr-xr-x 1 root root 1157 Jul 29 10:01 producerLog.sh
-rw-r--r-- 1 root root    0 Jul 29 10:06 server.log
[root@master log]# ./producerLog.sh 
sleep...
sleep...
sleep...

 

 

 

 

 

 

 

 

 Flume自定义拦截器(Interceptors)

 

一、自定义拦截器类型必须是:类全名$内部类名,其实就是内部类名称
  如:zhouls.bigdata.MySearchAndReplaceInterceptor$Builder

 

二、为什么这样写
  至于为什么这样写:是因为Interceptor接口还有一个 公共的内部接口(Builder) ,所以自定义拦截器 要是实现 Builder接口,
  也就是实现一个内部类(该内部类的主要作用是:获取flume-conf.properties 自定义的 参数,并将参数传递给 自定义拦截器)
三、
  本人知识有限,可能描述的不太清楚,可自行了解 java接口与内部类。

 

 

 

 

 

 

 

 

 

 

 

  由于有时候内置的拦截器不够用,所以需要针对特殊的业务需求自定义拦截器
  官方文档中没有发现自定义interceptor的步骤,但是可以根据flume源码参考内置的拦截器的代码
  flume-1.7/flume-ng-core/src/main/java/org/apache/flume/interceptor/HostInterceptor.java

  

  大家,去https://github.com/找到,因为,我的flume是1.7.0的。所以如下

 

 

 

 

 

 

 

 

 

  修改后的pom.xml为

 

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>zhouls.bigdata</groupId>
    <artifactId>flumeDemo</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <packaging>jar</packaging>

    <name>flumeDemo</name>
    <url>http://maven.apache.org</url>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <dependencies>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
            <scope>test</scope>
        </dependency>
        <!-- 此版本的curator操作的zk是3.4.6版本 -->
        <dependency>
            <groupId>org.apache.curator</groupId>
            <artifactId>curator-framework</artifactId>
            <version>2.10.0</version>
        </dependency> 
    <!-- https://mvnrepository.com/artifact/org.apache.flume/flume-ng-core -->
    <dependency>
        <groupId>org.apache.flume</groupId>
        <artifactId>flume-ng-core</artifactId>
        <version>1.7.0</version>
    </dependency> 
    
    </dependencies>
</project>

 

 

 

  

  然后,我这里,参考github上的给定参考代码,来写出属于我们自己业务需求的flume自定义拦截器代码编程。

  MySearchAndReplaceInterceptor.java.java

 

package zhouls.bigdata.flumeDemo;

import com.google.common.base.Preconditions;
import org.apache.commons.lang.StringUtils;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.HashMap;
import java.util.List;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

/**
 * Created by zhouls.
 *
 * 使用说明:
 * ======================================================
 * # 定义拦截器
 * agent.sources.kafkaSource.interceptors = i0
 * # 设置拦截器类型
 * # gift_record:giftRecord的意思是会把日志中的gift_record替换为giftRecord
 * agent.sources.kafkaSource.interceptors.i0.type = zhouls.MySearchAndReplaceInterceptor
 * agent.sources.kafkaSource.interceptors.i0.searchReplace = "gift_record:giftRecord,video_info:videoInfo"
 * ======================================================
 */
public class MySearchAndReplaceInterceptor implements Interceptor {

    private static final Logger logger = LoggerFactory
            .getLogger(MySearchAndReplaceInterceptor.class);

    /**
     * 需要替换的字符串信息
     * 格式:"key:value,key:value"
     */
    private final String search_replace;
    private String[] splits;
    private String[] key_value;
    private String key;
    private String value;
    private HashMap<String, String> hashMap = new HashMap<String, String>();
    private Pattern compile = Pattern.compile("\"type\":\"(\\w+)\"");
    private Matcher matcher;
    private String group;

    private MySearchAndReplaceInterceptor(String search_replace) {
        this.search_replace = search_replace;
    }

    /**
     * 初始化放在,最开始执行一次
     * 把配置的数据初始化到map中,方便后面调用
     */
    public void initialize() {
        try{
            if(StringUtils.isNotBlank(search_replace)){
                splits = search_replace.split(",");
                for (String key_value_pair:splits) {
                    key_value = key_value_pair.split(":");
                    key = key_value[0];
                    value = key_value[1];
                    hashMap.put(key,value);
                }
            }
        }catch (Exception e){
            logger.error("数据格式错误,初始化失败。"+search_replace,e.getCause());
        }

    }
    public void close() {

    }


    /**
     * 具体的处理逻辑
     * @param event
     * @return
     */
    public Event intercept(Event event) {
        try{
            String origBody = new String(event.getBody());
            matcher = compile.matcher(origBody);
            if(matcher.find()){
                group = matcher.group(1);
                if(StringUtils.isNotBlank(group)){
                    String newBody = origBody.replaceAll("\"type\":\""+group+"\"", "\"type\":\""+hashMap.get(group)+"\"");
                    event.setBody(newBody.getBytes());
                }
            }
        }catch (Exception e){
            logger.error("拦截器处理失败!",e.getCause());
        }
        return event;
    }

    public List<Event> intercept(List<Event> events) {
        for (Event event : events) {
            intercept(event);
        }
        return events;
    }

    public static class Builder implements Interceptor.Builder {
        private static final String SEARCH_REPLACE_KEY = "searchReplace";

        private String searchReplace;

        public void configure(Context context) {
            searchReplace = context.getString(SEARCH_REPLACE_KEY);
            Preconditions.checkArgument(!StringUtils.isEmpty(searchReplace),
                    "Must supply a valid search pattern " + SEARCH_REPLACE_KEY +
                            " (may not be empty)");
        }

        public Interceptor build() {
            Preconditions.checkNotNull(searchReplace,
                    "Regular expression searchReplace required");
            return new MySearchAndReplaceInterceptor(searchReplace);
        }

    }
}

 

  

 

 

 

  然后把MySearchAndReplaceInterceptor这个类导出成一个jar包。

 

 

   同时,大家也可以用maven来打jar包

 

 

 

 

 

 

 

 

 

  把这个jar包上传到flume1.7.0的lib目录下

[hadoop@master lib]$ rz

[hadoop@master lib]$ ls
apache-log4j-extras-1.1.jar    flume-file-channel-1.7.0.jar              flume-taildir-source-1.7.0.jar  kite-data-core-1.0.0.jar             parquet-hive-bundle-1.4.1.jar
async-1.4.0.jar                flume-hdfs-sink-1.7.0.jar                 flume-thrift-source-1.7.0.jar   kite-data-hbase-1.0.0.jar            parquet-jackson-1.4.1.jar
asynchbase-1.7.0.jar           flume-hive-sink-1.7.0.jar                 flume-tools-1.7.0.jar           kite-data-hive-1.0.0.jar             protobuf-java-2.5.0.jar
avro-1.7.4.jar                 flume-irc-sink-1.7.0.jar                  flume-twitter-source-1.7.0.jar  kite-hadoop-compatibility-1.0.0.jar  scala-library-2.10.5.jar
avro-ipc-1.7.4.jar             flume-jdbc-channel-1.7.0.jar              gson-2.2.2.jar                  libthrift-0.9.0.jar                  serializer-2.7.2.jar
commons-cli-1.2.jar            flume-jms-source-1.7.0.jar                guava-11.0.2.jar                log4j-1.2.17.jar                     servlet-api-2.5-20110124.jar
commons-codec-1.8.jar          flume-kafka-channel-1.7.0.jar             httpclient-4.2.1.jar            lz4-1.2.0.jar                        slf4j-api-1.6.1.jar
commons-collections-3.2.2.jar  flume-kafka-source-1.7.0.jar              httpcore-4.1.3.jar              mapdb-0.9.9.jar                      slf4j-log4j12-1.6.1.jar
commons-compress-1.4.1.jar     flume-ng-auth-1.7.0.jar                   irclib-1.10.jar                 metrics-core-2.2.0.jar               snappy-java-1.1.0.jar
commons-dbcp-1.4.jar           flume-ng-configuration-1.7.0.jar          jackson-annotations-2.3.0.jar   mina-core-2.0.4.jar                  twitter4j-core-3.0.3.jar
commons-io-2.1.jar             flume-ng-core-1.7.0.jar                   jackson-core-2.3.1.jar          MySearchAndReplaceInterceptor.jar    twitter4j-media-support-3.0.3.jar
commons-jexl-2.1.1.jar         flume-ng-elasticsearch-sink-1.7.0.jar     jackson-core-asl-1.9.3.jar      netty-3.9.4.Final.jar                twitter4j-stream-3.0.3.jar
commons-lang-2.5.jar           flume-ng-embedded-agent-1.7.0.jar         jackson-databind-2.3.1.jar      opencsv-2.3.jar                      velocity-1.7.jar
commons-logging-1.1.1.jar      flume-ng-hbase-sink-1.7.0.jar             jackson-mapper-asl-1.9.3.jar    paranamer-2.3.jar                    xalan-2.7.2.jar
commons-pool-1.5.4.jar         flume-ng-kafka-sink-1.7.0.jar             jetty-6.1.26.jar                parquet-avro-1.4.1.jar               xercesImpl-2.9.1.jar
curator-client-2.6.0.jar       flume-ng-log4jappender-1.7.0.jar          jetty-util-6.1.26.jar           parquet-column-1.4.1.jar             xml-apis-1.3.04.jar
curator-framework-2.6.0.jar    flume-ng-morphline-solr-sink-1.7.0.jar    joda-time-2.1.jar               parquet-common-1.4.1.jar             xz-1.0.jar
curator-recipes-2.6.0.jar      flume-ng-node-1.7.0.jar                   jopt-simple-3.2.jar             parquet-encoding-1.4.1.jar           zkclient-0.7.jar
derby-10.11.1.1.jar            flume-ng-sdk-1.7.0.jar                    jsr305-1.3.9.jar                parquet-format-2.0.0.jar
flume-avro-source-1.7.0.jar    flume-scribe-source-1.7.0.jar             kafka_2.10-0.9.0.1.jar          parquet-generator-1.4.1.jar
flume-dataset-sink-1.7.0.jar   flume-spillable-memory-channel-1.7.0.jar  kafka-clients-0.9.0.1.jar       parquet-hadoop-1.4.1.jar
[hadoop@master lib]$ pwd
/home/hadoop/app/flume-1.7.0/lib
[hadoop@master lib]$ 

 

 

 

 

drwxr-xr-x  2 hadoop hadoop  4096 Apr 20 12:00 conf
drwxr-xr-x  2 hadoop hadoop  4096 Jul 27 13:40 conf_HostInterceptor
drwxr-xr-x  2 hadoop hadoop  4096 Jul 27 14:31 conf_RegexExtractorInterceptor
drwxr-xr-x  2 hadoop hadoop  4096 Jul 27 15:26 conf_SearchandReplaceInterceptor
-rw-r--r--  1 hadoop hadoop  6172 Sep 26  2016 DEVNOTES
-rw-r--r--  1 hadoop hadoop  2873 Sep 26  2016 doap_Flume.rdf
drwxr-xr-x 10 hadoop hadoop  4096 Oct 13  2016 docs
drwxrwxr-x  2 hadoop hadoop  4096 Jul 27 16:26 lib
-rw-r--r--  1 hadoop hadoop 27625 Oct 13  2016 LICENSE
-rw-r--r--  1 hadoop hadoop   249 Sep 26  2016 NOTICE
-rw-r--r--  1 hadoop hadoop  2520 Sep 26  2016 README.md
-rw-r--r--  1 hadoop hadoop  1585 Oct 11  2016 RELEASE-NOTES
drwxrwxr-x  2 hadoop hadoop  4096 Apr 20 12:00 tools
[hadoop@master flume-1.7.0]$ cp -r conf conf_MySearchAndReplaceInterceptor
[hadoop@master flume-1.7.0]$ ll
total 164
drwxr-xr-x  2 hadoop hadoop  4096 Apr 20 12:00 bin
-rw-r--r--  1 hadoop hadoop 77387 Oct 11  2016 CHANGELOG
drwxr-xr-x  2 hadoop hadoop  4096 Apr 20 12:00 conf
drwxr-xr-x  2 hadoop hadoop  4096 Jul 27 13:40 conf_HostInterceptor
drwxr-xr-x  2 hadoop hadoop  4096 Jul 27 16:27 conf_MySearchAndReplaceInterceptor
drwxr-xr-x  2 hadoop hadoop  4096 Jul 27 14:31 conf_RegexExtractorInterceptor
drwxr-xr-x  2 hadoop hadoop  4096 Jul 27 15:26 conf_SearchandReplaceInterceptor
-rw-r--r--  1 hadoop hadoop  6172 Sep 26  2016 DEVNOTES
-rw-r--r--  1 hadoop hadoop  2873 Sep 26  2016 doap_Flume.rdf
drwxr-xr-x 10 hadoop hadoop  4096 Oct 13  2016 docs
drwxrwxr-x  2 hadoop hadoop  4096 Jul 27 16:26 lib
-rw-r--r--  1 hadoop hadoop 27625 Oct 13  2016 LICENSE
-rw-r--r--  1 hadoop hadoop   249 Sep 26  2016 NOTICE
-rw-r--r--  1 hadoop hadoop  2520 Sep 26  2016 README.md
-rw-r--r--  1 hadoop hadoop  1585 Oct 11  2016 RELEASE-NOTES
drwxrwxr-x  2 hadoop hadoop  4096 Apr 20 12:00 tools
[hadoop@master flume-1.7.0]$ 

 

 

 

 

   修改好log4j.properties ,为了方便管理查看日志

[hadoop@master conf_MySearchAndReplaceInterceptor]$ pwd
/home/hadoop/app/flume-1.7.0/conf_MySearchAndReplaceInterceptor
[hadoop@master conf_MySearchAndReplaceInterceptor]$ ll
total 16
-rw-r--r-- 1 hadoop hadoop 1661 Jul 27 16:27 flume-conf.properties.template
-rw-r--r-- 1 hadoop hadoop 1455 Jul 27 16:27 flume-env.ps1.template
-rw-r--r-- 1 hadoop hadoop 1565 Jul 27 16:27 flume-env.sh.template
-rw-r--r-- 1 hadoop hadoop 3107 Jul 27 16:27 log4j.properties
[hadoop@master conf_MySearchAndReplaceInterceptor]$ mv flume-conf.properties.template flume-conf.properties
[hadoop@master conf_MySearchAndReplaceInterceptor]$ vim log4j.properties 

 

 

 

 

 

#flume.root.logger=DEBUG,console
flume.root.logger=INFO,LOGFILE
flume.log.dir=./logs
flume.log.file=flume_MySearchAndReplaceInterceptor.log

 

 

 

 

 

[hadoop@master conf_MySearchAndReplaceInterceptor]$ ll
total 16
-rw-r--r-- 1 hadoop hadoop 1661 Jul 27 16:27 flume-conf.properties
-rw-r--r-- 1 hadoop hadoop 1455 Jul 27 16:27 flume-env.ps1.template
-rw-r--r-- 1 hadoop hadoop 1565 Jul 27 16:27 flume-env.sh.template
-rw-r--r-- 1 hadoop hadoop 3137 Jul 27 16:29 log4j.properties
[hadoop@master conf_MySearchAndReplaceInterceptor]$ vim flume-conf.properties 

 

 

 

  然后,修改flume的配置文件如下:

  注意:不能为上面。

 

 

  

  除非你的程序需要引号(“”),否则不要加引号(“”),本程序不需要引号,因此是错误的

 

 

 

 

#source的名字
agent1.sources = fileSource
# channels的名字,建议按照type来命名
agent1.channels = memoryChannel
# sink的名字,建议按照目标来命名
agent1.sinks = hdfsSink

# 指定source使用的channel名字
agent1.sources.fileSource.channels = memoryChannel
# 指定sink需要使用的channel的名字,注意这里是channel
agent1.sinks.hdfsSink.channel = memoryChannel


agent1.sources.fileSource.type = exec
agent1.sources.fileSource.command = tail -F /usr/local/log/server.log



#------- fileChannel-1相关配置-------------------------
# channel类型

agent1.channels.memoryChannel.type = memory
agent1.channels.memoryChannel.capacity = 1000
agent1.channels.memoryChannel.transactionCapacity = 1000
agent1.channels.memoryChannel.byteCapacityBufferPercentage = 20
agent1.channels.memoryChannel.byteCapacity = 800000


#---------拦截器相关配置------------------
#定义拦截器
agent1.sources.r1.interceptors = i1 i2
# 设置拦截器类型
agent1.sources.r1.interceptors.i1.type = zhouls.bigdata.MySearchAndReplaceInterceptor
agent1.sources.r1.interceptors.i1.searchReplace = gift_record:giftRecord,video_info:videoInfo,user_info:userInfo

# 设置拦截器类型
agent1.sources.r1.interceptors.i2.type = regex_extractor
# 设置正则表达式,匹配指定的数据,这样设置会在数据的header中增加log_type="某个值"
agent1.sources.r1.interceptors.i2.regex = "type":"(\\w+)"
agent1.sources.r1.interceptors.i2.serializers = s1
agent1.sources.r1.interceptors.i2.serializers.s1.name = log_type



#---------hdfsSink 相关配置------------------
agent1.sinks.hdfsSink.type = hdfs
# 注意, 我们输出到下面一个子文件夹datax中
agent1.sinks.hdfsSink.hdfs.path = hdfs://master:9000/data/types/%Y%m%d/%{log_type}
agent1.sinks.hdfsSink.hdfs.writeFormat = Text
agent1.sinks.hdfsSink.hdfs.fileType = DataStream
agent1.sinks.hdfsSink.hdfs.callTimeout = 3600000
agent1.sinks.hdfsSink.hdfs.useLocalTimeStamp = true

#当文件大小为52428800字节时,将临时文件滚动成一个目标文件
agent1.sinks.hdfsSink.hdfs.rollSize = 52428800
#events数据达到该数量的时候,将临时文件滚动成目标文件
agent1.sinks.hdfsSink.hdfs.rollCount = 0
#每隔N s将临时文件滚动成一个目标文件
agent1.sinks.hdfsSink.hdfs.rollInterval = 1200

#配置前缀和后缀
agent1.sinks.hdfsSink.hdfs.filePrefix=run
agent1.sinks.hdfsSink.hdfs.fileSuffix=.data

 

 

 


  主要在里面添加拦截器的配置是如下

#---------拦截器相关配置------------------
#定义拦截器
agent1.sources.r1.interceptors = i1 i2
# 设置拦截器类型
agent1.sources.r1.interceptors.i1.type = zhouls.bigdata.MySearchAndReplaceInterceptor
agent1.sources.r1.interceptors.i1.searchReplace = "gift_record:giftRecord,video_info:videoInfo,user_info:userInfo"

# 设置拦截器类型
agent1.sources.r1.interceptors.i2.type = regex_extractor
# 设置正则表达式,匹配指定的数据,这样设置会在数据的header中增加log_type="某个值"
agent1.sources.r1.interceptors.i2.regex = "type":"(\\w+)"
agent1.sources.r1.interceptors.i2.serializers = s1
agent1.sources.r1.interceptors.i2.serializers.s1.name = log_type

  意思就是,即把gift_record 换成giftRecord

         video_info转换成videoInfo

         user_info转换成userInfo

 

 

 

 

  然后,启动agent服务即可。

[hadoop@master flume-1.7.0]$ bin/flume-ng agent --conf conf_MySearchAndReplaceInterceptor/  --conf-file conf_MySearchAndReplaceInterceptor/flume-conf.properties --name agent1  -Dflume.root.logger=INFO,console

 

 

  我这里,出现了这个错误

2017-07-29 10:17:51,006 (lifecycleSupervisor-1-2) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.start(MonitoredCounterGroup.java:95)] Component type: SOURCE, name: fileSource started
2017-07-29 10:17:52,792 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.HDFSDataStream.configure(HDFSDataStream.java:57)] Serializer = TEXT, UseRawLocalFileSystem = false
2017-07-29 10:17:55,094 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:231)] Creating hdfs://master:9000/data/types/20170729//run.1501294672792.data.tmp
2017-07-29 10:17:55,842 (hdfs-hdfsSink-call-runner-0) [WARN - org.apache.hadoop.util.NativeCodeLoader.<clinit>(NativeCodeLoader.java:62)] Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2017-07-29 10:18:00,495 (pool-5-thread-1) [ERROR - org.apache.flume.source.ExecSource$ExecRunnable.run(ExecSource.java:352)] Failed while running command: tail -F /usr/local/log/server.log
org.apache.flume.ChannelFullException: Space for commit to queue couldn't be acquired. Sinks are likely not keeping up with sources, or the buffer size is too tight
    at org.apache.flume.channel.MemoryChannel$MemoryTransaction.doCommit(MemoryChannel.java:127)
    at org.apache.flume.channel.BasicTransactionSemantics.commit(BasicTransactionSemantics.java:151)
    at org.apache.flume.channel.ChannelProcessor.processEventBatch(ChannelProcessor.java:194)
    at org.apache.flume.source.ExecSource$ExecRunnable.flushEventBatch(ExecSource.java:381)
    at org.apache.flume.source.ExecSource$ExecRunnable.run(ExecSource.java:341)
    at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
2017-07-29 10:18:00,544 (timedFlushExecService21-0) [ERROR - org.apache.flume.source.ExecSource$ExecRunnable$1.run(ExecSource.java:327)] Exception occured when processing event batch
org.apache.flume.ChannelException: java.lang.InterruptedException
    at org.apache.flume.channel.BasicTransactionSemantics.commit(BasicTransactionSemantics.java:154)
    at org.apache.flume.channel.ChannelProcessor.processEventBatch(ChannelProcessor.java:194)
    at org.apache.flume.source.ExecSource$ExecRunnable.flushEventBatch(ExecSource.java:381)
    at org.apache.flume.source.ExecSource$ExecRunnable.access$100(ExecSource.java:254)
    at org.apache.flume.source.ExecSource$ExecRunnable$1.run(ExecSource.java:323)
    at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
    at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308)
    at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180)
    at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294)

 

 

   见博客

Flume启动运行时报错org.apache.flume.ChannelFullException: Space for commit to queue couldn't be acquired. Sinks are likely not keeping up with sources, or the buffer size is too tight解决办法(图文详解)

 

 

   

  中间,我这里还出现下面这个错误

Flume启动时报错Caused by: java.lang.InterruptedException: Timed out before HDFS call was made. Your hdfs.callTimeout might be set too low or HDFS calls are taking too long.解决办法(图文详解)

 

 

 

   中间,我这里还出现下面这个错误

Flume启动报错[ERROR - org.apache.flume.sink.hdfs. Hit max consecutive under-replication rotations (30); will not continue rolling files under this path due to under-replication解决办法(图文详解)

 

 

 

 

 

 

[root@master log]# ll
total 4
-rwxr-xr-x 1 root root 1157 Jul 27 14:42 producerLog.sh
-rw-r--r-- 1 root root    0 Jul 27 15:30 server.log
[root@master log]# ./producerLog.sh 

 

 

  查看

 

 

  

 

 

 

 

 

 对于目标文件的生成
我这里,貌似懂了
是要达到那么多的临时文件大小生成后
才会有一股目标目录出来
让它等吧 
 
 
 
   还有资料说,

flume自定义拦截器实现多行读取日志

 

   加了还是没用。

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

欢迎大家,加入我的微信公众号:大数据躺过的坑        人工智能躺过的坑
 
 
 

同时,大家可以关注我的个人博客

   http://www.cnblogs.com/zlslch/   和     http://www.cnblogs.com/lchzls/      http://www.cnblogs.com/sunnyDream/   

   详情请见:http://www.cnblogs.com/zlslch/p/7473861.html

 

  人生苦短,我愿分享。本公众号将秉持活到老学到老学习无休止的交流分享开源精神,汇聚于互联网和个人学习工作的精华干货知识,一切来于互联网,反馈回互联网。
  目前研究领域:大数据、机器学习、深度学习、人工智能、数据挖掘、数据分析。 语言涉及:Java、Scala、Python、Shell、Linux等 。同时还涉及平常所使用的手机、电脑和互联网上的使用技巧、问题和实用软件。 只要你一直关注和呆在群里,每天必须有收获

 

      对应本平台的讨论和答疑QQ群:大数据和人工智能躺过的坑(总群)(161156071) 

 

 

 

 

 

 

 

 

 

 

 

 

 

转载于:https://www.cnblogs.com/zlslch/p/7244211.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值