python 实现经典算法

  1 import time
  2 start_time = time.clock()
  3 
  4 list_ = [9, 2, 7, 4, 5, 6, 3, 8, 1]
  5 
  6 
  7 """
  8 # 堆排序(通过不断的构造最大堆来选出序列的最大值放到末尾)
  9 # 最大堆调整:将堆的末端子节点调整,使得子节点永远小于父节点。
 10 # 建立最大堆:将堆所有数据重新排序。
 11 # 堆排序:移除位在第一个数据的根节点,并做最大堆调整的递归运算。
 12 import random
 13 
 14 
 15 def max_heapify(heap, heapsize, root):
 16     # 最大堆调整
 17     left = 2 * root + 1
 18     right = left + 1
 19     larger = root
 20     if left < heapsize and heap[larger] < heap[left]:
 21         larger = left
 22     if right < heapsize and heap[larger] < heap[right]:
 23         larger = right
 24     if larger != root:
 25         heap[larger], heap[root] = heap[root], heap[larger]
 26         max_heapify(heap, heapsize, larger)
 27 
 28 
 29 def build_max_heap(heap):
 30     # 构造一个堆,将堆中所有数据重新排序
 31     heapsize = len(heap)
 32     for i in range((heapsize - 2) // 2, -1, -1):
 33         max_heapify(heap, heapsize, i)
 34 
 35 
 36 def heapsort(heap):
 37     # 将根节点去除与最后一位做对调,对前面len-1个节点继续进行对调整过程。
 38     build_max_heap(heap)
 39     for i in range(len(heap) - 1, -1, -1):
 40         heap[0], heap[i] = heap[i], heap[0]
 41         max_heapify(heap, i, 0)
 42     return heap
 43 
 44 
 45 if __name__ == '__main__':
 46     a = [30, 50, 57, 77, 62, 78, 94, 80, 84]
 47     print(a)
 48     heapsort(a)
 49     print(a)
 50     # b = [random.randint(1, 1000) for i in range(1000)]
 51     # print(b)
 52     # heapsort(b)
 53     # print(b)
 54 # --------------------------------------------------------------
 55 
 56 # 归并排序
 57 # 首先用分割的方法将这个序列分割成一个个已经排好序的子序列,然后
 58 # 再利用归并的方法将一个个的子序列合并成排序号的序列
 59 def merge(left, right):
 60     result = []
 61     while left and right:
 62         result.append(left.pop(0)) if left[0] < right[0] else result.append(right.pop(0))
 63     while left:
 64         result.append(left.pop(0))
 65     while right:
 66         result.append(right.pop(0))
 67     return result
 68 
 69 
 70 def mergesort(l):
 71     if len(l) < 2:
 72         return l
 73     mid_index = len(l) // 2
 74     left = mergesort(l[:mid_index])
 75     right = mergesort(l[mid_index:])
 76     return merge(left, right)
 77 
 78 
 79 print(mergesort(list_))
 80 # --------------------------------------------------------------
 81 
 82 # 希尔排序 将序列分割成若干子序列(由相隔某个增量的元素组成的)分别进行直接插入排序接着依次缩小增量继续进行排序,待整个序列基本有序时,再对全体元素进行插入排序。
 83 def shell_sort(l):
 84     n = len(l)
 85     gap = n // 2
 86     while gap > 0:
 87         for i in range(gap, n):
 88             temp = l[i]  # 每个步长进行插入排序
 89             j = i
 90             # 插入排序
 91             while j >= gap and l[j - gap] > temp:
 92                 l[j] = l[j - gap]
 93                 j -= gap
 94             l[j] = temp
 95         gap = gap // 2
 96     return l
 97 
 98 
 99 print(shell_sort(list_))
100 # --------------------------------------------------------------
101 
102 # 插入排序 
103 # 从索引1开始,一次与其左边的数相比较,若比自己大则插入并删除自己。
104 def insertsort(l):
105     len_ = len(l)
106     for i in range(1, len_):
107         for j in range(i):
108             if l[j] > l[i]:
109                 l.insert(j, l[i])
110                 l.pop(i+1)
111                 break
112     return l
113 
114 
115 print(insertsort(list_))
116 # --------------------------------------------------------------
117 
118 # 快速排序
119 # 选定一个基数如第一个元素
120 # 将比基数小的和比基数大的元素分别放在新列表里并按顺序排列相加
121 # 递归直到新列表元素只有一个
122 def quicksort(l):
123     len_ = len(l)
124     if len_ < 2:
125         return l
126     else:
127         pivot = l[0]
128         less = [i for i in l[1:] if i <= pivot]
129         greater = [j for j in l[1:] if j > pivot]
130         print(less, greater)
131         return quicksort(less) + [pivot] + quicksort(greater)
132 
133 
134 print(quicksort(list_))
135 # --------------------------------------------------------------
136 
137 # 选择排序
138 # 将第一个数与右边数的最小值相比较,若本身较大则与最小值调换位置
139 # 依次遍历即可
140 def selectsort(l):
141     len_ = len(l)
142     for i in range(len_ - 1):
143         for j in range(i+1, len_):
144             min_ = min(l[j:])
145             min_index = l.index(min_)
146             if l[i] > min_:
147                 l[i], l[min_index] = l[min_index], l[i]
148     return l
149
# 上述选择排序代码存在问题,这次复习自己重写时发现对重复数字处理不对,同时循环也有问题。以下是更改后代码:
def
selectsort(l): length = len(l) for i in range(length-1): m = min(l[i+1:]) # 当前数字右边的数字列表中的最小数 j = l[i+1:].index(m) + i + 1 # m的索引,防止重复数字的干扰 if l[i] > m: l[i], l[j] = l[j], l[i] return l
150 
151 print(selectsort(list_)) 
152 # --------------------------------------------------------------
153 
154 # 冒泡排序
155 # 从索引0开始依次本身和右边的元素,若右边小则调换位置,来取得最大值
156 # 然后依次循环把较大的轮换到右边
157 def bubblesort(l):
158     len_ = len(l)
159     for i in range(len_ - 1):
160         for j in range(len_ - i - 1):
161             if l[j] > l[j+1]:
162                 l[j], l[j+1] = l[j+1], l[j]
163     return l
164 
165 
166 print(bubblesort(list_))
167 """
168 
169 end_time = time.clock()
170 print(end_time - start_time)

目前对于堆排序还不太理解,以备后续重温复习。

转载于:https://www.cnblogs.com/guolei2570/p/8794566.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值