HDU-1685(华东赛赛题)

      今天忽然心血来潮,想重新去做下华东赛中没做出的题目,这道便是当时磨了我2个多小时没磨出来的题目,重新看题目的时候就觉得思路十分清晰,题目要求出1到b,与1到d之间gcd=1的数的个数,想多不用想,先想到欧拉函数.我们假设b<d,将1与d的区间分割为[1,b]与[b+1,d]两部分,则[1,b]部分十分简单,只需要累加[1,b]内各数的欧拉值,而[b+1,d]这部分需要进行以下操作,分解该区间内各数质真因数,再进行对b的容斥,统计后的值就是答案了.

      比如sample中的 1--3 , 1--5 ,1--3的部分为1+1+2=4(欧拉之和),对于4到5的部分,4的质真因数为2,则对b容斥后的数为b-b/2=3-3/2=2,5没有质真因数,则容斥结果为b=3,累加4+3+2=9为所要求的值.

      在质因数分解那部分,借鉴了月光大牛的思想,真是好厉害,复杂度是明显的下降....狂钦佩....至于为什么对b容斥能求出互质个数,看组合数学吧~~貌似正好把无因子的数给筛出去的~~~以下是代码实现,容斥部分使用dfs实现.

 

 

          

ContractedBlock.gif ExpandedBlockStart.gif Code
#include <iostream>
using namespace std;
const long MAXN=100005

bool hash[MAXN];//用以素数筛选
__int64 elur[MAXN]={0,1};//欧拉
long len[MAXN];//存因子长度
long p[MAXN][10];//存每个数的因子

__int64 dfs(
long index,long b,long now)
{

    __int64 res
=0;
    
long i;
    
for (i=index;i<len[now];++i)
    {
        res
+=b/p[now][i];
        res
-=dfs(i+1,b/p[now][i],now);
    }
    
return res;
}


void pre()
{
    
int i,j;

    
for(i=2;i<MAXN;i++)
    {
        
if(!hash[i])
        {
            
for(j=i;j<MAXN;j+=i)
            {
                p[j][ len[j]
++ ]=i;
                hash[j] 
=true;
            }
        }
    }

    
for(i=2;i<MAXN;i++)
    {
        elur[i] 
= i;
        
for(j=0;j<len[i];j++)
        {
            elur[i] 
= elur[i]*(p[i][j]-1)/p[i][j];
        }
        elur[i]
+=elur[i-1];//迭代保存欧拉和
    }
}


int main()
{
    
long i;
    pre();
    
long T;
    scanf(
"%ld",&T);
    
long f=1;
    
while (T--)
    {
        
long a,b,c,d,k;
        scanf(
"%ld %ld %ld %ld %ld",&a,&b,&c,&d,&k);
        
if (k==0)
        {
            printf(
"Case %ld: 0\n",f);
            
++f;
            
continue;
        }
        
if (b>d)
        {
            swap(b,d);
        }
        b
=b/k;
        d
=d/k;

        __int64 res
=elur[b];

        
for (i=b+1;i<=d;++i)
        {
            res
+=b-dfs(0,b,i);
        }

        printf(
"Case %ld: %I64d\n",f,res);
        
++f;

    }
    
return 0;
}

转载于:https://www.cnblogs.com/zhuangli/archive/2008/07/31/1256902.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值