今天忽然心血来潮,想重新去做下华东赛中没做出的题目,这道便是当时磨了我2个多小时没磨出来的题目,重新看题目的时候就觉得思路十分清晰,题目要求出1到b,与1到d之间gcd=1的数的个数,想多不用想,先想到欧拉函数.我们假设b<d,将1与d的区间分割为[1,b]与[b+1,d]两部分,则[1,b]部分十分简单,只需要累加[1,b]内各数的欧拉值,而[b+1,d]这部分需要进行以下操作,分解该区间内各数质真因数,再进行对b的容斥,统计后的值就是答案了.
比如sample中的 1--3 , 1--5 ,1--3的部分为1+1+2=4(欧拉之和),对于4到5的部分,4的质真因数为2,则对b容斥后的数为b-b/2=3-3/2=2,5没有质真因数,则容斥结果为b=3,累加4+3+2=9为所要求的值.
在质因数分解那部分,借鉴了月光大牛的思想,真是好厉害,复杂度是明显的下降....狂钦佩....至于为什么对b容斥能求出互质个数,看组合数学吧~~貌似正好把无因子的数给筛出去的~~~以下是代码实现,容斥部分使用dfs实现.
Code
#include <iostream>
using namespace std;
const long MAXN=100005;
bool hash[MAXN];//用以素数筛选
__int64 elur[MAXN]={0,1};//欧拉
long len[MAXN];//存因子长度
long p[MAXN][10];//存每个数的因子
__int64 dfs(long index,long b,long now)
{
__int64 res=0;
long i;
for (i=index;i<len[now];++i)
{
res+=b/p[now][i];
res-=dfs(i+1,b/p[now][i],now);
}
return res;
}
void pre()
{
int i,j;
for(i=2;i<MAXN;i++)
{
if(!hash[i])
{
for(j=i;j<MAXN;j+=i)
{
p[j][ len[j]++ ]=i;
hash[j] =true;
}
}
}
for(i=2;i<MAXN;i++)
{
elur[i] = i;
for(j=0;j<len[i];j++)
{
elur[i] = elur[i]*(p[i][j]-1)/p[i][j];
}
elur[i]+=elur[i-1];//迭代保存欧拉和
}
}
int main()
{
long i;
pre();
long T;
scanf("%ld",&T);
long f=1;
while (T--)
{
long a,b,c,d,k;
scanf("%ld %ld %ld %ld %ld",&a,&b,&c,&d,&k);
if (k==0)
{
printf("Case %ld: 0\n",f);
++f;
continue;
}
if (b>d)
{
swap(b,d);
}
b=b/k;
d=d/k;
__int64 res=elur[b];
for (i=b+1;i<=d;++i)
{
res+=b-dfs(0,b,i);
}
printf("Case %ld: %I64d\n",f,res);
++f;
}
return 0;
}
#include <iostream>
using namespace std;
const long MAXN=100005;
bool hash[MAXN];//用以素数筛选
__int64 elur[MAXN]={0,1};//欧拉
long len[MAXN];//存因子长度
long p[MAXN][10];//存每个数的因子
__int64 dfs(long index,long b,long now)
{
__int64 res=0;
long i;
for (i=index;i<len[now];++i)
{
res+=b/p[now][i];
res-=dfs(i+1,b/p[now][i],now);
}
return res;
}
void pre()
{
int i,j;
for(i=2;i<MAXN;i++)
{
if(!hash[i])
{
for(j=i;j<MAXN;j+=i)
{
p[j][ len[j]++ ]=i;
hash[j] =true;
}
}
}
for(i=2;i<MAXN;i++)
{
elur[i] = i;
for(j=0;j<len[i];j++)
{
elur[i] = elur[i]*(p[i][j]-1)/p[i][j];
}
elur[i]+=elur[i-1];//迭代保存欧拉和
}
}
int main()
{
long i;
pre();
long T;
scanf("%ld",&T);
long f=1;
while (T--)
{
long a,b,c,d,k;
scanf("%ld %ld %ld %ld %ld",&a,&b,&c,&d,&k);
if (k==0)
{
printf("Case %ld: 0\n",f);
++f;
continue;
}
if (b>d)
{
swap(b,d);
}
b=b/k;
d=d/k;
__int64 res=elur[b];
for (i=b+1;i<=d;++i)
{
res+=b-dfs(0,b,i);
}
printf("Case %ld: %I64d\n",f,res);
++f;
}
return 0;
}