电子结构引论读书笔记:第二章-多电子波函数和算符

更新:3 MAY 2016

多电子哈密顿算符的一般写法:

\(\mathscr{H}=-\sum\limits_{i=1}^{N}\dfrac{1}{2}\nabla_i^2-\sum\limits_{A=1}^{M}\dfrac{1}{2M_A}\nabla_A^2-\sum\limits_{i=1}^{N}\sum\limits_{A=1}^{M}\dfrac{Z_A}{r_{iA}}+\sum\limits_{i=1}^{N}\sum\limits_{j>i}^{N}\dfrac{1}{r_{ij}}+\sum\limits_{A=1}^{M}\sum\limits_{B>A}^{M}\dfrac{Z_AZ_B}{R_{AB}}\)

注:1. 采用原子单位制;2. 未考虑相对论效应;3. 无外场

2.1 描述电子

2.1.1 原子单位制(a.u.):

长度单位:Bohr \(=\dfrac{4\pi\varepsilon_0\hbar^2}{m_ee^2}=a_0=0.52918\ \overset{\circ}{\rm{A}}\)

能量单位:Hartree \(=\dfrac{e^2}{4\pi\varepsilon_0a_0}=\mathscr{E}_a=27.211\ \rm{eV}=627.51\ \rm{kCal/mol}\)

质量单位:电子质量 \(m_e=9.1095\times10^{-31}\ \rm{kg}\)

电荷单位:电子电荷量 \(e=1.6022 \times 10^{-19}\ \rm{C}\)

角动量单位:约化普朗克常量 \(\hbar=1.0546\times 10^{-34}\ \rm{J\cdot s}\)

2.1.2 Bohr-Oppenheimer近似

2.1.3 电子波函数反对称、自旋与泡利不相容原理

2.2 描述轨道

2.2.1 自旋轨道与空间轨道

考虑电子自旋与空间分布的电子波函数称为自旋轨道Spin Orbitals;只考虑空间分布的电子波函数成为空间轨道Spatial Orbital。

2.2.2 Hartree积

2.2.3 Slater行列式

行:同一原子占据不同自旋轨道;列:同一自旋轨道放置不同原子。N个电子占据N个自旋轨道。

系数:\((N!)^{-\frac{1}{2}}\)

是使Hartree积满足反对称性的线性组合。

2.2.4 Hartree-Fock近似

Fock算符:\(f(i)=-\dfrac{1}{2}\nabla_i^2-\sum\limits_{A=1}^{M}\dfrac{Z_A}{r_{iA}}+v^{HF}(i)\)

Hartree-Fock方程:\(f(i)\chi(\textbf{x}_i)=\varepsilon\chi(\textbf{x}_i)\)

其中关键是单电子势能项\(v^{HF}(i)\)为其他电子对第i个电子的平均势能。具体定义见下章。

自洽场方法SCF:猜测初始自旋轨道,从而由库仑定律求出平均场;由平均场代入Fock算符,由变分法求出一组新的基态自旋轨道。重复此过程直到能量、轨道的变化小于误差范围。

难点:每个Hartree-Fock方程能够解出第i个电子的一组本征值与相互正交的本征函数(无穷多),而且在形式上所有电子的Fock算符形式相同,意味着N个电子将占据这同样的无穷多个自旋轨道。

Rooothaan方程详细见下章。

2.2.5 实例:最小基H2模型

重叠积分S,交换积分

2.2.6 激发态行列式

单重激发、二重激发……将体系波函数(Dirac记号表示的Slater行列式)中基态的自旋轨道替换成原先的空自旋轨道即可。

2.2.7 精确波函数与组态相互作用CI

思路:

设\(\{\chi_i(x)\}\)是以上解出的一组完全基(无穷多个元素)。由于Hartree-Fock近似的限制,任何一种填充方式都不能精确表示体系的状态。但是体系的状态却可以表示为各种填充方式(体系波函数,Slater行列式,或称组态configuration)的线性叠加,即

\(|\Phi\rangle=c_0|\Psi_0\rangle+\sum\limits_{ra}|\Psi_a^r\rangle+\sum\limits_{a<b \atop r<s}c_{ab}^{rs}|\Psi_{ab}^{rs}\rangle+\sum\limits_{a<b<c \atop r<s<t}c_{abc}^{rst}|\Psi_{abc}^{rst}\rangle+\cdots\)

对系数c作线性变分,得到精确的波函数与能量。将精确基态能量记为\(\mathscr{E}_0\)。定义相关能(correlation energy)\(E_{corr}=\mathscr{E}_0-E_0\)。由于体系的精确基态能量最低,因此相关能应当为负值。

Full-CI:选择\(\{\chi_i(x)\}\)为有限组基(如2K,K为空间轨道的个数)。难点:对角化是什么意思

2.3 描述算符(算符与矩阵元)

讲解思路:2.3.1 最小基H2矩阵元的求法 - 2.3.2 单电子与二电子积分的记号(各种括号) - 2.3.3 求矩阵元的一般规则 - 2.3.4 一般规则的推导 - 2.3.5 由空间轨道代替自旋轨道的方法 -2.3.6 库仑积分与交换积分 -2.3.7 对行列式能量的伪经典解释(看填充方式写体系能量)

算符的矩阵元即\(H_{ij}=\langle\Psi_i|\mathscr{H}|\Psi_j\rangle\)

\(\mathscr{H}=\sum\limits_{i=1}^{N}h(i)+\sum\limits_{i=1}^{N}\sum\limits_{j>i}^{N}v(i,j)\equiv \mathscr{O}_1+\mathscr{O}_2\)

由矩阵元写能量

空间轨道替代自旋轨道的意义:实际中闭壳层由于自旋的正交性,上面记号中有大量的零项。计算一步自旋可以删去零项。

2.4 二次量子化

2.4.1 升降算符的运算

升算符\(a_i^+\)在Dirac记号左面增加一个自旋轨道\(\chi_i\),降算符\(a_i\)在Dirac记号左面消去一个自旋轨道\(\chi_i\)。对降算符,如果Dirac记号中含有对应项而不在最左面,交换位置使之处于最左面。交换一次位置符号发生一次变化。

\(a_ja_i+a_ia_j=0\)

\(a_ia_i=0\)

\(a_ia_j^++a_j^+a_i=\delta_{ij}\)

定义真空态 \(\langle\ |\ \rangle =1\)

以真空态为基础可以构筑任何组态,计算组态的重叠积分也可以改写成升降算符形式运算(利用上面的规则)。

2.4.2 升降算符的矩阵元

2.5 自旋匹配组态

spin-adapted configuration

2.5.1 自旋算符

2.5.2 restricted行列式与自旋匹配组态

2.5.3 unrestricted行列式

转载于:https://www.cnblogs.com/fnight/p/5454534.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值