xgzc— math 专题训练(一)

Lucas定理

\(p\)是质数时,有\((^n_m)\equiv(^{n/p}_{m/p}) * (^{n\%p}_{m\%p}) \pmod{p}\)

狄利克雷卷积

定义:\((f*g)(n)=\sum_{d|n}f(d)g(\frac{n}{d})\)
然后满足交换律,结合律,分配律

单位元:\(e=[n=1]\),即\(f*e=e*f=f\)

逆元:对于每一个\(f(1)\ne0\)的函数\(f\),存在逆元\(g\)使得\(f*g=e\)

那么\(g(n)\)满足递推式:
\(g(n)=\frac{1}{f(1)}([n=1]-\sum_{i|n,i\ne1}f(i)g(\frac{n}{i}))\)

Extra

定义1:\((f\oplus g)(x)=\sum_{x|d}f(\frac{d}{x})g(d)\)
那么有,\((f*g)\oplus h =f \oplus (g \oplus h)\)

定义2:\((f\cdot g)(x)=f(x)g(x)\)
那么当\(f\)是完全积性函数时,有\((f\cdot g)*(f\cdot h)=f\cdot (g*h)\)

常见数论函数

\(1(x)=1\)
\(id^k(x)=x^k\)
\(\phi(x)=\sum_{i=1}^{x}[gcd(i,x)=1]\)
\(d(x)=\sum_{d|x}1\)
\(\sigma(x)=\sum_{d|x}d\)
\(\mu:1\)的逆元

其中的一些关系:
\(d = 1*1\)
\(id = 1*\phi\)
\(\sigma=1*id=1*1*\phi=d*\phi\)
\(\phi=id*\mu\)
\(1=d*\mu\)
\(id=\sigma*\mu\)

莫比乌斯反演

如果\(g=f*1\),则\(g*\mu=f\)

如果\(g=1\oplus f\),则\(f=\mu \oplus g\)
证明:\(\mu \oplus g=\mu \oplus 1 \oplus f=(\mu * 1)\oplus f = f\)

例题

[SDOI2015] 约数个数和

\(\sum_{i=1}^n\sum_{i=1}^md(ij)\)

\(d(ij)=\sum_{a|i}\sum_{b|j}[gcd(a,b)=1]\)
那么,原式等于

\[ \sum_{i=1}^n\sum_{i=1}^m\sum_{a|i}\sum_{b|j}[gcd(a,b)=1]= \sum_{i=1}^n\sum_{j=1}^m\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{j}\rfloor[gcd(i,j)=1] \]
\[ \sum_{d=1}^n\mu(d)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{id}\rfloor\sum_{i=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{m}{id}\rfloor \]
定义:\(S(n)=\sum_{i=1}^n\lfloor\frac{n}{i}\rfloor\)

void init() {
    mu[1] = 1;
    for (int i = 2; i <= 50000; i++) {
        if (!np[i]) { p[++tot] = i; mu[i] = -1; }
        for (int j = 1; j <= tot && p[j] * i <= 50000; j++) {
            np[p[j] * i] = 1;
            if (!(i % p[j])) break;
            mu[p[j] * i] = -mu[i];
        }
    }
    for (int i = 2; i <= 50000; i++) mu[i] += mu[i - 1];
    for (int i = 1; i <= 50000; i++)
        for (int l = 1, r; l <= i; l = r + 1) {
            r = i / (i / l);
            S[i] += (r - l + 1) * (i / l);
        }
    return ;
}
 main() {
    init();
    int T;
    scanf("%lld", &T);
    while (T--) {
        int n, m;
        scanf("%lld%lld", &n, &m);
        if (n > m) swap(n, m);
        int ans = 0;
        for (int l = 1, r; l <= n; l = r + 1) {
            r = min(m / (m / l), n / (n / l));
            ans += (mu[r] - mu[l - 1]) * S[n / l] * S[m / l];
        }
        printf("%lld\n", ans);
    }
    return 0;
}

[SHOI2015]超能粒子炮·改

\(\sum_{i=0}^{k}(^n_i)\)
根据\(Lucas\)定理
可以通过对模数相同的放在一块计算
再递归求解即可。

int Lucas(LL n, LL m) {
    if (!n || !m) return 1;
    return Lucas(n / P, m / P) * C[n % P][m % P] % P;
}
int f(LL n, LL k) {
    if (n <= 3000 && k <= 3000) return F[n][k];
    return (f(n % P, P - 1) * f(n / P, k / P - 1) % P + 
    f(n % P, k % P) * Lucas(n / P, k / P) % P) % P;
}
void init() {
    for (int i = 0; i <= 3000; i++) C[i][0] = 1;
    for (int i = 1; i <= 3000; i++)
        for (int j = 1; j <= i; j++)
            C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % P;
    for (int i = 0; i <= 3000; i++) {
        F[i][0] = C[i][0];
        for (int j = 1; j <= 3000; j++)
            F[i][j] = (F[i][j - 1] + C[i][j]) % P;
    }
    return ;
}

CF1097F Alex and a TV Show

因为只关心奇偶性,我们考虑使用\(bitset\)维护因子集合\(g(x)\)
操作2是异或
操作3是并
因为\(g=1\oplus f\)
\(f(x)\)\(x\)在集合出现的次数
反演一下就是,\(f=\mu\oplus g\)

void prework(int n) {
    Mu.set();
    for (int i = 2; i * i <= n; i++)
        for (int j = 1; j * i * i <= n; j++)
            Mu[i * i * j] = 0;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j * i <= n; j++)
            mu[i][j * i] = Mu[j], p[j * i][i] = 1;
}
int main() {
    prework(7000);
    int n, Q;
    scanf("%d%d", &n, &Q);
    while (Q--) {
        int op, x, y, z;
        scanf("%d%d%d", &op, &x, &y);
        if (op == 1) S[x] = p[y];
        else if (op == 2) {
            scanf("%d", &z);
            S[x] = S[y] ^ S[z];
        }
        else if (op == 3) {
            scanf("%d", &z);
            S[x] = S[y] & S[z];
        }
        else printf("%d", (mu[y] & S[x]).count() & 1);
    }
    return 0;
}

Luogu5176 公约数

首先,\(gcd(ij,jk,ik)=\frac{gcd(i,j)gcd(j,k)gcd(i,k)}{gcd(i,j,k)}\)
那么,
\(Ans=\sum_i\sum_j\sum_k(i,j)^2(j,k)^2(i,k)^2\)
\(=\sum_i\sum_j\sum_k(i,j)^2(j,k)^2+\sum_i\sum_j\sum_k^2(j,k)^2(i,k)^2+\sum_i\sum_j\sum_k(i,j)^2(i,k)^2\)
那么定义\(F(n,m)=\sum_i\sum_j(i,j)^2\),则\(Ans=F(n,m)*p+F(n,p)*m+F(m,p)*n\)
现在问题就是求\(F(n,m)\)
\(F(n,m)=\sum_i\sum_j(i,j)^2\)
\(=\sum_{d=1}^nd^2\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[gcd(i,j)=1]\)
\(=\sum_{d=1}^nd^2\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}\sum_{k|i,k|j}\mu(k)\)
\(=\sum_{d=1}^nd^2\sum_{k=1}^{\lfloor\frac{n}{d}\rfloor}\mu(k)\lfloor\frac{n}{kd}\rfloor\lfloor\frac{m}{kd}\rfloor\)
到这一步已经可以做到\(O(n ^ \frac{3}{4})\)
考虑优化,
\(T=kd\)
原式\(=\sum_{T=1}^n\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum_{d|T}d^2\mu(\frac{T}{d})\)
可以发现后面就是\(id^2*\mu\)
显然是个积性函数,考虑线性筛
\(f(p^0)=1\)
\(f(p)=p^2-1\)
\(f(p^k)=(p^2-1)p^{2(k-1)}=p^2f(p^{k-1})\)

转载于:https://www.cnblogs.com/zzy2005/p/11521130.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
VR(Virtual Reality)即虚拟现实,是一种可以创建和体验虚拟世界的计算机技术。它利用计算机生成一种模拟环境,是一种多源信息融合的、交互式的三维动态视景和实体行为的系统仿真,使用户沉浸到该环境中。VR技术通过模拟人的视觉、听觉、触觉等感觉器官功能,使人能够沉浸在计算机生成的虚拟境界中,并能够通过语言、手势等自然的方式与之进行实时交互,创建了一种适人化的多维信息空间。 VR技术具有以下主要特点: 沉浸感:用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该使用户难以分辨真假,使用户全身心地投入到计算机创建的三维虚拟环境中,该环境中的一切看上去是真的,听上去是真的,动起来是真的,甚至闻起来、尝起来等一切感觉都是真的,如同在现实世界中的感觉一样。 交互性:用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度(包括实时性)。例如,用户可以用手去直接抓取模拟环境中虚拟的物体,这时手有握着东西的感觉,并可以感觉物体的重量,视野中被抓的物体也能立刻随着手的移动而移动。 构想性:也称想象性,指用户沉浸在多维信息空间中,依靠自己的感知和认知能力获取知识,发挥主观能动性,寻求解答,形成新的概念。此概念不仅是指观念上或语言上的创意,而且可以是指对某些客观存在事物的创造性设想和安排。 VR技术可以应用于各个领域,如游戏、娱乐、教育、医疗、军事、房地产、工业仿真等。随着VR技术的不断发展,它正在改变人们的生活和工作方式,为人们带来全新的体验。
VR(Virtual Reality)即虚拟现实,是一种可以创建和体验虚拟世界的计算机技术。它利用计算机生成一种模拟环境,是一种多源信息融合的、交互式的三维动态视景和实体行为的系统仿真,使用户沉浸到该环境中。VR技术通过模拟人的视觉、听觉、触觉等感觉器官功能,使人能够沉浸在计算机生成的虚拟境界中,并能够通过语言、手势等自然的方式与之进行实时交互,创建了一种适人化的多维信息空间。 VR技术具有以下主要特点: 沉浸感:用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该使用户难以分辨真假,使用户全身心地投入到计算机创建的三维虚拟环境中,该环境中的一切看上去是真的,听上去是真的,动起来是真的,甚至闻起来、尝起来等一切感觉都是真的,如同在现实世界中的感觉一样。 交互性:用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度(包括实时性)。例如,用户可以用手去直接抓取模拟环境中虚拟的物体,这时手有握着东西的感觉,并可以感觉物体的重量,视野中被抓的物体也能立刻随着手的移动而移动。 构想性:也称想象性,指用户沉浸在多维信息空间中,依靠自己的感知和认知能力获取知识,发挥主观能动性,寻求解答,形成新的概念。此概念不仅是指观念上或语言上的创意,而且可以是指对某些客观存在事物的创造性设想和安排。 VR技术可以应用于各个领域,如游戏、娱乐、教育、医疗、军事、房地产、工业仿真等。随着VR技术的不断发展,它正在改变人们的生活和工作方式,为人们带来全新的体验。
基于GPT-SoVITS的视频剪辑快捷配音工具 GPT, 通常指的是“Generative Pre-trained Transformer”(生成式预训练转换器),是一个在自然语言处理(NLP)领域非常流行的深度学习模型架构。GPT模型由OpenAI公司开发,并在多个NLP任务上取得了显著的性能提升。 GPT模型的核心是一个多层Transformer解码器结构,它通过在海量的文本数据上进行预训练来学习语言的规律。这种预训练方式使得GPT模型能够捕捉到丰富的上下文信息,并生成流畅、自然的文本。 GPT模型的训练过程可以分为两个阶段: 预训练阶段:在这个阶段,模型会接触到大量的文本数据,并通过无监督学习的方式学习语言的结构和规律。具体来说,模型会尝试预测文本序列中的下一个词或短语,从而学习到语言的语法、语义和上下文信息。 微调阶段(也称为下游任务训练):在预训练完成后,模型会被应用到具体的NLP任务中,如文本分类、机器翻译、问答系统等。在这个阶段,模型会使用有标签的数据进行微调,以适应特定任务的需求。通过微调,模型能够学习到与任务相关的特定知识,并进一步提高在该任务上的性能。 GPT模型的优势在于其强大的生成能力和对上下文信息的捕捉能力。这使得GPT模型在自然语言生成、文本摘要、对话系统等领域具有广泛的应用前景。同时,GPT模型也面临一些挑战,如计算资源消耗大、训练时间长等问题。为了解决这些问题,研究人员不断提出新的优化方法和扩展模型架构,如GPT-2、GPT-3等,以进一步提高模型的性能和效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值