PCA学习总结

 斯坦福大学的《机器学习》课程有两个星期没看了,最近一直忙着论文,考试。这周开了几门新课,其中模式识别、知识发现与数据开采。这两门跟机器学习相关很大。通过前段时间的自学,现在听着老师讲课,有种豁然开朗的感觉。之前听斯坦福大学的课程都是在本子上做笔记,第一次在博客上写机器学习的学习总结,写的目的主要是理清一下自己的思路,把自己懂的不懂的记录一下,也是对知识的一种回顾。

  主成分分析PCAPrincipal Components Analysis

  目的:特征很多是和类标签有关,但里面存在噪声或冗余,这种情况,需要一种特征降维的方法来减少特征数,减少噪音和冗余,减少过度拟合的可能性。

  思想:将n维特征映射到K维上(k<n,k维是全新的互交特征,这k维特征称为主元,是重新构造的k维特征,而不是简单从n维特征中去除n-k维特征。

  计算过程:

  例:二维样本数据 Data:X1.5,0.5,2.2,1.9,3.1,2.3,2,1,1.5,1.1T;Y(2.4,0.7,2.9,2.2,3.0,2.7,1.6,1.1,1.6,0.9)T,X,Y代表特征,向量代表数据。

可以认为,有10篇文档,Xlearn出现的TF-IDF,Ystudy出现的TF-IDF。问题:想将二维样本数据降成一维数据。

  步骤:

  1,求X,Y平均值,然后对所有样例,都减少相应均值。

    X均值=1.81Y均值=1.91.

    DataAdjust: X(0.69,-1.31,0.39,0.09,1.29,0.49,0.19,-0.31,-0.71)T;Y(0.45,-1.21,0.99,0.29,1.09,0.79,-0.31,-0.31,-1.01)T

  2,求特征协方差矩阵。

  3,求协方差的特征值和特征向量

  4,将特征值按照从大道小顺序排序,选择其中最大k个,然后对其对应的k个特征向量分别作为列向量组成的特征向量矩阵。

  5,将样本投影到选取的特征向量上。

    FinalData(m*k)=DataAdjust(m*n)*Eigenvecters(n*k)

    融合成一个新特征,叫LS特征,该特征基本代表这两个特征。

  PCA理论基础

  1,最大方差理论

  2,最小错误理论

  3,坐标轴相关度理论  

 

转载于:https://www.cnblogs.com/lskyne/archive/2012/11/14/2770816.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值