codeforces363B - Fence DP

题意:连续K项和最小  

解题思路:简单DP

解题代码:

 1 // File Name: 363b.cpp
 2 // Author: darkdream
 3 // Created Time: 2014年07月24日 星期四 09时58分59秒
 4 
 5 #include<vector>
 6 #include<list>
 7 #include<map>
 8 #include<set>
 9 #include<deque>
10 #include<stack>
11 #include<bitset>
12 #include<algorithm>
13 #include<functional>
14 #include<numeric>
15 #include<utility>
16 #include<sstream>
17 #include<iostream>
18 #include<iomanip>
19 #include<cstdio>
20 #include<cmath>
21 #include<cstdlib>
22 #include<cstring>
23 #include<ctime>
24 
25 using namespace std;
26 int sum[200000];
27 int main(){
28     int n , m; 
29     scanf("%d %d",&n,&m);
30     memset(sum,0,sizeof(sum));
31     int min = 1e9;
32     int ans = 0 ; 
33     for(int i =1 ;i<= n;i ++)
34     {
35         int temp ; 
36         scanf("%d",&temp);
37         sum[i] = sum[i-1]+temp;
38         if(i >= m )
39             if(sum[i] - sum[i-m] < min)
40             {
41                 min = sum[i] - sum[i-m];  
42                 ans = i-m+1;
43             }
44     }
45     printf("%d\n",ans);
46 return 0;
47 }
View Code

转载于:https://www.cnblogs.com/zyue/p/3864914.html

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值