POJ 1015 Jury Compromise 2个月后重做,其实这是背包题目

http://poj.org/problem?id=1015

题目大意:在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定。陪审团是由法官从公众中挑选的。先随机挑选n个人作为陪审团的候选人,然后再从这n个人中选m人组成陪审团。选m人的办法是:控方和辩方会根据对候选人的喜欢程度,给所有候选人打分,分值从0到20。为了公平起见,法官选出陪审团的原则是:选出的m个人,必须满足辩方总分和控方总分的差的绝对值最小。如果有多种选择方案的辩方总分和控方总分的之差的绝对值相同,那么选辩控双方总分之和最大的方案即可。

 

其实学DP首先要从背包开始,学了背包后,看这题就是一个背包 + 记录路径的问题

设dp[m][k] = max表示,选了m个数,产生的和差值是k的时候,的最大和值。

但是,这个背包是不能记录路径的,

因为

2 2

1 2

3 4

这组数据,生成和差值是-1的时候有两个,这样会存在路径覆盖问题。

 

所以要这样做,暴力枚举m组,对于每一次,都在1---n中选一个,然后选的时候看看是否存在于这条路径就行了。

也就是对于上面的数据,一开始选解出选出1个的时候的最优值,那自然是选第二个数,然后,再解出选出两个数的时候的最优解。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <assert.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL;


#include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
int n, m;
const int fix = 20;
const int maxn = 200 + 20;
struct node {
    int b, c, dis, sum;
}a[maxn];
const int up = 40 * 20 + 20;
struct DP {
    int is, pre;
    int id, val;
}dp[20 + 20][up];
set<int>ans;
bool in(int go, int val, int cmp) {
    while (go > 0) {
        if (dp[go][val].is == -1) return false;
        if (dp[go][val].id == cmp) return true;
        val = dp[go][val].pre;
        assert(val <= up);
        assert(val >= 0);
        go--;
    }
    return false;
}
void work() {
//    init();
    for (int i = 1; i <= n; ++i) {
        scanf("%d%d", &a[i].b, &a[i].c);
        a[i].dis = a[i].b - a[i].c + fix;
        a[i].sum = a[i].b + a[i].c;
    }
    memset(dp, -1, sizeof dp);
    dp[0][0].id = inf, dp[0][0].is = 0, dp[0][0].pre = inf, dp[0][0].val = 0;
    for (int i = 1; i <= m; ++i) { //选m个
        for (int j = 1; j <= n; ++j) {
            for (int k = a[j].dis; k <= up - 20; ++k) {
                if (dp[i - 1][k - a[j].dis].is == -1) continue;
                if (dp[i][k].val < dp[i - 1][k - a[j].dis].val + a[j].sum && !in(i - 1, k - a[j].dis, j)) {
//                    if (dp[i][k].id == j) continue;
                    dp[i][k].val = dp[i - 1][k - a[j].dis].val + a[j].sum;
                    dp[i][k].is = 0;
                    dp[i][k].id = j;
                    dp[i][k].pre = k - a[j].dis;
                }
            }
        }
    }
    int p1 = m * fix, p2 = m * fix;
    int id1 = -inf, id2 = -inf, idans = -inf;
    while (true) {
        if (dp[m][p1].is != -1) id1 = p1;
        if (dp[m][p2].is != -1) id2 = p2;
        if (id1 != -inf && id2 == -inf) {
            idans = id1;
            break;
        } else if (id1 == -inf && id2 != -inf) {
            idans = id2;
            break;
        } else if (id1 != -inf && id2 != -inf) {
            if (dp[m][id1].val > dp[m][id2].val) {
                idans = id1;
            } else idans = id2;
            break;
        }
        p1--;
        p2++;
    }
//    cout << idans << endl;
    ans.clear();
    int go = m;
    while (dp[go][idans].id != inf) {
        assert(dp[go][idans].is != -1);
        ans.insert(dp[go][idans].id);
        idans = dp[go][idans].pre;
        go--;
    }
    static int f = 0;
    printf("Jury #%d\n", ++f);
    int ans1 = 0, ans2 = 0;
    for (set<int> :: iterator it = ans.begin(); it != ans.end(); ++it) {
        ans1 += a[*it].b;
        ans2 += a[*it].c;
    }
//    cout << endl;
    printf("Best jury has value %d for prosecution and value %d for defence:\n", ans1, ans2);
    for (set<int> :: iterator it = ans.begin(); it != ans.end(); ++it) {
        cout << " " << *it;
    }
    cout << endl;
}

int main() {
#ifdef local
    freopen("data.txt", "r", stdin);
//    freopen("data.txt", "w", stdout);
#endif
    while (scanf("%d%d", &n, &m) != EOF && (n + m)) {
        work();
        printf("\n");
    }
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/liuweimingcprogram/p/6257624.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值