设 $A,B$ 都是 $n$ 阶复方阵, 且 $A^2+B^2=2AB$. 证明: (1) $AB-BA$ 不可逆; (2) 如果 $\rank(A-B)=1$, 那么 $AB=BA$. 转载于:https://www.cnblogs.com/zhangzujin/p/3712973.html