车牌识别中的可识性、放弃率、精度与识别率辨析

本文探讨了车牌识别程序的实际应用争议,分析了识别精度与可识性的关系,提出了完善车牌识别系统的建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我曾经把身份证图像拿来让厦门宸天的程序识别,结果是闽20282。一个根本就没有车牌的图像怎么会识别出车牌号呢?

换句话说,车牌识别的争议究竟在哪里呢?一个车牌识别程序标称精度是90%,而实际测试的结果甚至50%都达不到。是车牌识别程序错了吗?厂家的说法当然是车牌识别程序没有错。错在你把不该拿来识别的图像拿来了。

细想下来,这里还真有逻辑问题。是的,我不该把本身就没有车牌的身份证拿来让程序识别。厂家有理由假设图像中一定有车牌。可是,实际的情况是,如果你开车在高速公路上,你一定会看到用电脑光盘把车牌遮挡起来的情况。也许,通过交警严格管理,这种情况可能会被杜绝,但是,车牌被污损的情况是一定有的。这些都会导致图像里面尽管有车牌,但是,图像和身份证实质是一样的,可以被视为没有车牌。

就是说,厂家标称精度90%是厂家说的,前提是你不要把不该识别的图像拿来了。你拿来不该识别的图像,当然精度就下降了。

关键的问题来了。该不该识别,这个标准由谁来定?如果是厂家,那精度就是90%了;如果是你,当然就是50%了。看来都没有错,就是你怎么都觉得有点冤,90%怎么就成了50%,似乎还不能说错了。

所以,在车牌识别的争议里,只有精度概念是不完全的。那除了精度,还该有什么呢?

首先,必须定义可识性。车牌能否识别不该由厂家说,当然,也不该由你说,该由程序说,就是程序自身应该有判断图像是否可识的的标准。好比,验钞机自己就能判断假钞。其实,严格说来,验钞机不是在判断假钞,而是在判断钞票是否可识。就是说,验钞机有一个判断标准,它能剔除不能识别的钞票。

有了可识性,我们再说放弃率。放弃率就是验钞机判断为不可识的钞票,就是验钞机剔除的钞票。

最后说车牌识别率,车牌识别率就是在程序自身具有可识性判断的基础上,扣除放弃率后的精度。想想验钞机要是没有可识别性,放弃率,其精度会乱到何种程度。

好了。车牌识别的任务就是在确保车牌识别率100%的前提下,尽力降低放弃率。换言之,哪怕你现在的放弃率是99%,只要你保证程序判断可识的车牌,其识别率为100%,也从理论上达到了研究车牌识别就是要节省人工的目的。

当然,对喜欢较真的人来说,我还得说一句,车牌识别率100%是不可能的,但是,就算不可能你也要做到99.999999%,就如同验钞机,你可以说,验钞机也不是100%,但它是99.999999%,你不否认吧?否则,麻烦大了。

转载于:https://www.cnblogs.com/zhangzhongyi/archive/2010/03/03/1677363.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值