宽度优先搜索(BFS)

宽度优先搜索,又称为广度优先搜索,简称BFS

搜索过程:从初始结点开始,逐层向下扩展,即第n层搜索未完成,不得进入下一层搜索

一、初始结点入队,进入循环

二、取出队列的第一个元素

三、判断该结点是不是目标结点,如果是目标结点,则问题解决,跳出循环

四、如果该结点不是目标结点,判断其是否能够扩展,若不能,跳到步骤二

五、如果该结点能扩展,将其子结点放入队列的尾部

六、跳到步骤二

用一个经典的例子(走迷宫)来感受下

给定一个二维数组 int a[10][10] = {0 , 1 , 0 , 0 , 0

                 0 , 1 , 0 , 1 , 0

                 0 , 0 , 0 , 0 , 0

                 0 , 1 , 1 , 1 , 0

                 0 , 0 , 0 , 1 , 0 } ;

它表示一个迷宫,其中“1”代表墙,“0”代表通路,只能横着走或竖着走,要求编写程序找出从左上角到右下角的最短路径的长度

#include<iostream>

using namespace std ;

int dx[] = {-1,0,1,0} ;
int dy[] = {0,1,0,-1} ;

int m , n ;

int map[10][10] ;

int visit[10][10] = {0} ;

typedef struct Node {
    int x , y ;
    int step ;
}Node;

bool is_ok(Node cur)    {
    if(cur.x < 0 || cur.x >= m || cur.y < 0 || cur.y >= n)
        return false ;
    return true ;
}

void bfs()    {
    Node node[1000] ;
    int first , last ;
    first = last = 0 ;
    Node cur ;
    cur.x = 0 , cur.y = 0 ; cur.step = 0 ;
    node[last++] = cur ;
    visit[0][0] = 1 ;
    while(first < last)    {
        cur = node[first++] ;
        if(cur.x == 4 && cur.y == 4)    {
            cout << cur.step << endl ;
            break ; 
        }
        for(int i = 0 ; i < 4 ; i++)    {
            Node next ;
            next.x = cur.x + dx[i] ;
            next.y = cur.y + dy[i] ;
            if(map[next.x][next.y] == 1)
                continue ;
            if(visit[next.x][next.y] == 1)
                continue ;
            if(is_ok(next) == true)    {
                next.step = cur.step + 1 ;
                visit[next.x][next.y] = 1 ;
                node[last++] = next ;
            }
        }
    }
}

int main()    {
    cin >> m >> n ;
    for(int i = 0 ; i < m ; i++)
        for(int j = 0 ; j < n ; j++)
            cin >> map[i][j] ;
    bfs() ;
    return 0 ;
}

 

转载于:https://www.cnblogs.com/scottdinggo/p/4440153.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值