深度学习6一般线性模型

在前面我们曾经有一个问题,就是在logistic回归中,我们为什么用

clip_image002

对于这个问题,我们先定义了一个一般线性模型

clip_image004

clip_image006一般为y,就是我们前面所说的真实值y

这个分布也就是指数分布

伯努利分布,高斯分布,泊松分布,贝塔分布,狄特里特分布都可以用这个指数分布来表示。

在对数回归时采用的是伯努利分布,对于伯努利分布,可以表示成

clip_image008

则我们对照上面的一般线性模型

clip_image010clip_image012clip_image014,这边也就看到我们为什么用上面的g(z)的原因

clip_image016

对于正态分布,为了简单起见,clip_image018

clip_image020

则对照上面的一般线性模型。有

clip_image022

这个也就是我们前面的线性回归。

好的,下面总结一下思路:

1. 对于我们要估计的值,我们就将其转化到某个分布中去,(特定的问题转化到特定的分布)

比如分类问题,我们只有0跟1,则我们转换到0,1分布中去,则我们就用到一个函数clip_image002[1]

2.对于其他的问题,也就可以转化到其他分布上去。对于可以转化的问题就是给点x和θ,分布y服从以η为参数一般线性模型。clip_image024

3.我们的目标是在x的条件下预测真实值clip_image006[1]clip_image006[2]一般情况为y,对于我们的预测函数h(x),认为其实在x条件下y的期望,clip_image026,则

在logistic回归中,分布为clip_image028其期望是clip_image030,即h=clip_image030[1]=clip_image014[1]

在线性回归中,分布是正态分布clip_image032,期望是clip_image034,即

h=clip_image034[1]=clip_image024[1]

这样对于前面的logistic回归的理论就有了。

转载于:https://www.cnblogs.com/fengbing/archive/2013/05/19/3086403.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值