LightOJ 1218 概率水题(几何分布)


题意:给你一个n面骰子,问你投出所有面需要的次数的期望值是多少。
题解:放在过去估计秒解,结果现在自己想好久,还查了下,有人用极限证明...实际上仔细想想这种情况投出与前面不一样的概率p的倒数就是次数的期望值阿!好菜
后面再查了下是几何分布,离散型的...


/** @Date    : 2016-10-26-19.01
  * @Author  : Lweleth (SoungEarlf@gmail.com)
  * @Link    : 
  * @Version : $
  */
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
#define LL long long
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std;

const int INF = 0x3f3f3f3f;
const int N = 1e5+2000;


int main()
{
    int T;
    int cnt = 0;
    cin >> T;
    while(T--)
    {
        double n;
        scanf("%lf", &n);

        double ans = 1;
        //n面骰子 投出和前面k次不一样的概率为p = n-k/n,
        //为了使这种情况发生 期望值为1/p
        for(double i = 1; i < n; i++)
            ans += n/(n-i);
        printf("Case %d: %.10lf\n", ++cnt, ans);

    }
    return 0;
}

转载于:https://www.cnblogs.com/Yumesenya/p/6008414.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值