UVA-607-DP

https://vjudge.net/problem/UVA-607  

题意:你是一个教授,给你N个topic,每个topic都得讲到,而且还不允许跳着讲,每节课的时长为L,不允许拖堂,但是可以有剩余时间用于讨论,

但是不能剩余太多的时间,要不然学生会不开心。不开心的公式如下。

 

 t为剩余时间,C为不开心度。求N个tpoic讲完,花费的课程总数最少时,学生不开心度的最小值是多少。

1:花费课程总数最少,可以贪心求出。

2:学生不开心度最小。

设dp[i]表示前i个topic的最小不开心度。

那么dp[i]=min(dp[j-1]+cost(topic[j]+......+topic[i])) 其中 (topic[j]+......+topic[i])<=L

#include "pch.h"
#include <string>
#include<iostream>
#include <sstream>
#include<map>
#include<memory.h>
#include<vector>
#include<algorithm>
#include<queue>
#include<vector>
#include<stack>
#include<math.h>
#include<iomanip>
#include<bitset>
#include"math.h"
namespace cc
{
    using std::cout;
    using std::endl;
    using std::cin;
    using std::map;
    using std::vector;
    using std::string;
    using std::sort;
    using std::priority_queue;
    using std::greater;
    using std::vector;
    using std::swap;
    using std::stack;
    using std::bitset;
    using std::stringstream;



    constexpr int N = 1005;



    int n;

    int topic[N];
    int lec[N];
    int dp[N];
    int L, C;

    int cost(int l, int c, int sum)
    {
        int  t = l - sum;
        if (t == 0)
        {
            return 0;
        }
        else if (1 <= t && t <= 10)
        {
            return -c;
        }
        return (t - 10)*(t - 10);
    }


    void solve()
    {
        int t = 0;
        while (cin >> n)
        {
            if (n == 0)
            {
                break;
            }
            cin >> L >> C;
            for (int i = 1; i <= n; i++)
            {
                cin >> topic[i];
            }
            lec[0] = 0;
            dp[0] = 0;
            for (int i = 1; i <= n; i++)
            {
                lec[i] = lec[i - 1] + 1;
                dp[i] = dp[i - 1] + cost(L, C, topic[i]);
                int sum = topic[i];
                for (int j = i - 1; j >= 0; j--)
                {
                    int val = dp[j] + cost(L, C, sum);
                    //贪心使用最少的课程
                    if (lec[i] > lec[j] + 1)
                    {
                        lec[i] = lec[j] + 1;
                        dp[i] = val;
                    }
                    //dp,相同课程数目,最小的不开心度
                    else if (lec[i] == lec[j] + 1 && dp[i] > val)
                    {
                        dp[i] = val;
                    }
                    sum = sum + topic[j];
                    if (sum > L)
                        break;
                }
            }
            if (t != 0)
            {
                cout << endl;
            }
            ++t;
            cout << "Case "<<t<<":" << endl;
            cout << "Minimum number of lectures: " << lec[n] << endl;
            cout << "Total dissatisfaction index: " << dp[n] << endl;
        }

    }

};


int main()
{

#ifndef ONLINE_JUDGE
    freopen("d://1.text", "r", stdin);
#endif // !ONLINE_JUDGE
    cc::solve();

    return 0;
}

 输入:

6
30 15
10
10
10
10
10
10

10
120 10
80
80
10
50
30
20
40
30
120
100
0

输出:

Case 1:
Minimum number of lectures: 2
Total dissatisfaction index: 0

Case 2: Minimum number of lectures: 6 Total dissatisfaction index: 2700

 

posted on 2019-09-17 00:27  好吧,就是菜菜 阅读( ...) 评论( ...) 编辑 收藏

转载于:https://www.cnblogs.com/shuiyonglewodezzzzz/p/11531181.html

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
### 关于UVa 307问题的动态规划解法 对于UVa 307 (Sticks),虽然通常采用深度优先搜索(DFS)+剪枝的方法来解决这个问题,但也可以尝试构建一种基于动态规划的思想去处理它。然而,在原描述中并未提及具体的动态规划解决方案[^3]。 #### 动态规划解题思路 考虑到本题的核心在于通过若干根木棍拼接成更少数量的新木棍,并使得这些新木棍尽可能接近给定的目标长度。为了应用动态规划技术,可以定义一个二维数组`dp[i][j]`表示从前i种不同类型的木棍中选取一些组合起来能否恰好组成总长度为j的情况: - 如果存在这样的组合,则`dp[i][j]=true`; - 否则`dp[i][j]=false`. 初始化时设置`dp[0][0]=true`, 表明没有任何木棍的情况下能够构成零长度。接着遍历每种类型的木棍以及所有可能达到的累积长度,更新对应的布尔值。最终检查是否存在某个k使得`sum/k * k == sum && dp[n][sum/k]`成立即可判断是否能成功分割。 这种转换方式利用了动态规划中的两个重要特性:最优化原理和重叠子问题属性。具体来说,每当考虑一根新的木棍加入现有集合时,只需要关注之前已经计算过的较短长度的结果,从而避免重复运算并提高效率[^1]. #### Python代码实现 下面给出一段Python伪代码用于说明上述逻辑: ```python def can_partition_sticks(stick_lengths, target_length): n = len(stick_lengths) # Initialize DP table with False values. dp = [[False]*(target_length + 1) for _ in range(n + 1)] # Base case initialization. dp[0][0] = True for i in range(1, n + 1): current_stick = stick_lengths[i - 1] for j in range(target_length + 1): if j >= current_stick: dp[i][j] |= dp[i - 1][j - current_stick] dp[i][j] |= dp[i - 1][j] return any(dp[-1][l] and l != 0 for l in range(target_length + 1)) # Example usage of the function defined above. stick_lengths_example = [...] # Input your data here as a list. total_sum = sum(stick_lengths_example) if total_sum % min(stick_lengths_example) == 0: result = can_partition_sticks(stick_lengths_example, int(total_sum / min(stick_lengths_example))) else: result = False print('Can partition sticks:', 'Yes' if result else 'No') ``` 需要注意的是,这段代码只是一个简化版本,实际比赛中还需要进一步调整参数以适应特定输入范围的要求。此外,由于题目本身允许有多余的小段剩余未被使用,所以在设计状态转移方程时也应适当放宽条件.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值