ElasticSearch 初识ES

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接: https://blog.csdn.net/u013047584/article/details/80869130

       接触ElasticSearch一段时间了,前期调研、项目接入、数据同步、列表查询这些阶段都已经经历了,但是ES在脑海中的整体映像还是模模糊糊,做个梳理,认真地思考一下ElasticSearch中模糊的思维。

       前提:

       如图,是从github上学习到了,宏观总结阶段的流程化思考,很科学的学习习惯,我按照这个思路来总结下目前阶段我理解到的ElasticSearch.

它是什么

1.术语定义

      ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。
      官网:https://www.elastic.co/products/elasticsearch 
      百度百科:https://baike.baidu.com/item/elasticsearch/3411206?fr=aladdin 

2.它的历史
      出现原因:https://www.jianshu.com/p/3d43616999d9 (一个做菜谱的故事)
      历史版本:https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-upgrade.html(每个版本节点,做了哪些事情,有助于排解使用中的问题)
        
3.构架

    

      如图所示,是ES的整体架构,从下往上说:
      1.Gateway是es用于存储索引的文件系统,支持多种文件类型,如图所示。
      2.Gateway往上就是分布式的Lucene框架,ES底层的API是由这一层提供的,每个节点都有一个Lucene引擎的支持。
      3.Lucene往上是Elasticsearch的模块,包括索引模块、搜索模块、映射解析模块等。River相当于第三方插件,用来导入第三方数据源,在2.x之后不再使用。
      4.ES模块之上是Discovery、Scripting和第三方插件。Discovery是ES的节点发现模块,不同机器上的ES节点要组成集群需要消息通信,集群内部选主master都是通过Discovery来做。Scripting用来支持JavaScript、Python等多语言,可以在查询语句中嵌入。
      5.再往上是传输模块和JMX。传输模块支持Thrift、Memcached、HTTP,默认HTTP传输。JMX是java的管理框架。
      6.再往上是ES提供给用户的接口,通过RESTful API和ES集群进行交互。

4.核心概念
      1.集群
      代表一个集群,集群中有多个节点,其中有一个为主节点,这个主节点是可以通过选举产生的,主从节点是对于集群内部来说的。es的一个概念就是去中心化,字面上理解就是无中心节点,这是对于集群外部来说的,因为从外部来看es集群,在逻辑上是个整体,你与任何一个节点的通信和与整个es集群通信是等价的。

      2.节点
      一个节点是集群中的一个服务器,对于节点,最好采用被动加入的方式,不然容易产生“脑裂”现象。

      3.索引4.类型 5.文档

      这三个概念,参考与关系型DB的对比:

     

      6.分片
      es可以把一个完整的索引分成多个分片,这样的好处是可以把一个大的索引拆分成多个,分布到不同的节点上。构成分布式搜索。分片的数量只能在索引创建前指定,并且索引创建后不能更改。

      7.副本
      es可以设置多个索引的副本,副本的作用一是提高系统的容错性,当某个节点某个分片损坏或丢失时可以从副本中恢复。二是提高es的查询效率,es会自动对搜索请求进行负载均衡。


4.应用场景
     1.站内搜索
     用在网页信息量很大的网站,百度、github、stackoverflow,全文检索的功能,方便用户快速检索数据信息。
     2.NoSQL数据库
     Elasticsearch读写性能优于MongoDB,支持地理位置查询。
     3.日志分析
     日志分析由实时日志分析平台ELK(Elasticsearch、Logstash、Kiabana)完成,能够对日志进行集中的收集、存储、搜索、分析、监控以及可视化。

5.同类常见技术
      Solr(全文搜索)对比es: https://blog.csdn.net/vv8086/article/details/74452178 
      Splunk(全文搜索、大数据搜索) 对比es:https://blog.csdn.net/github_39335046/article/details/73835390 

   

       从趋势上可见,近几年ES的排名也是越来靠前。

学习前提、依赖
       RESTful API的使用
       JSON数据结构的了解。

为什么会出现
     1.分布式
     2.全文检索
     3.近实时搜索和分析
     4.高可用
     5.模式自有
     6.RESTful API
     从这几个角度看,这似乎是es的优点,随着现在互联网项目的数据量越来越大,这恰恰是为什么es能越来越火的原因啊。

缺陷
      换了好几个负面的关键词去搜索,抛开技术实现,从选型的角度,相比较solr,没有什么缺陷。像“深度分页”这种的,完全可以在使用的时候避免,官网给了很好的解决方案:Scroll以及from/size等方法。


归纳整理并分享
      1.官网的Getting Started绝对是最快、最好的学习方式;
      2.安装时候,通过HEAD插件,或者googl浏览器的sense插件,自己敲一敲,多动手;

      elasticsearch辅助:
      1.head插件
      2.Kiabana

 

 脑图总结

 1.概述;2.应用;3.原理;4.QA

 

转载于:https://www.cnblogs.com/xibuhaohao/p/11416231.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值