[HDU2829]Lawrence

题面在这里

题意

英国军官劳伦斯带领一群阿拉伯国民对奥斯曼帝国进行游击队袭击。
他的主要目标是铁路。
整条铁路有\(n\)个仓库,每个仓库都有一个战略价值\(x_i\)
对于每条完整的铁路\([l,r]\),其战略价值为铁路上两两仓库的战略价值之和,即\((\sum_{k=l}^{r}x[k])^2-\sum_{k=l}^{r}x[k]^2\)
现在劳伦斯可以摧毁\(m\)条铁路,求他摧毁铁路后所有\(m+1\)段铁路战略价值之和的最小值

数据范围

\[n\le 1000,m<n,x_i\le 100,多组数据\]

sol

\(f[i][j]\)为将前\(i\)个仓库分成\(j\)段所需的最小代价,答案存在\(f[i][m+1]\)
那么\(O(n^3)\)的方程显然:
\[f[i][j]=\min_{k=j}^{i-1}{f[k][j-1]+w[k+1,i]}\]
其中\(w[i,j]=\frac{1}{2}((\sum_{k=i}^{k=j}x[i])^2-\sum_{k=i}^{k=j}x[i]^2)\)

容易发现\(w[i,j]\)满足区间包含关系单调

对于\(i\le i'\le j\le j'\),可以发现
\[(w[i,j]+w[i',j'])-(w[i,j']+w[i',j])\]
\[=(w[i,j]-w[i,j'])+(w[i',j']-w[i',j])\]
\[=-(\sum_{k=i}^{j}{x[k]})\times(\sum_{l=j+1}^{j'}{x[l]})+(\sum_{k=j+1}^{j'}{x[k]})\times(\sum_{l=i'}^{j}{x[l]})\]
\[=(\sum_{k=j+1}^{j'}{x[k]})\times(\sum_{l=i'}^{j}{x[l]}-\sum_{k=i}^{j}{x[k]})\le 0\]
\(\therefore w[i,j]+w[i',j']\le w[i,j']+w[i',j],\)\(w[i,j]\)满足平行四边形不等式

然后我们需要证明决策单调;
\(s[i][j]=max\){\(p\)|\(f[i][j]=f[p][j-1]+w[p+1][i]\)},即最大转移点
打个表可以发现\(s[i][j]\le s[i+1][j]\),证明这个就相当于把复杂度变成了\(O(n^2)\)
其实我们根据这个不等式写一发交上去就可以AC了...
其实本人在A掉这道题之前也并没有证明转移点的单调性...

那么我们现在需要证明:\(s[i][j]\le s[i+1][j]\)
\(p_1=max\){\(p\)|\(f[i][j]=f[p][j-1]+w[p+1][i]\)},
那么原式即\(\forall p_2\le p_1,\)
\(f[p_2][j-1]+w[p_2+1][i+1]\ge f[p_1][j-1]+w[p_2+1][i+1]\)
\(p_1\)的性质有\(f[p_2][j-1]+w[p_2+1][i]\ge f[p_1][j-1]+w[p_2+1][i]\)
那么只要证
\[f[p_1][j-1]+w[p_1][i]+f[p_2][j-1]+w[p_2][i+1]\]
\[\le f[p_1][j-1]+w[p_1][i+1]+f[p_2][j-1]+w[p_2][i],\]
即可(对这个式子有两行)

要证上式并不难,化简后会发现只要证
\[w[p_1][i]+w[p_2][i+1]\le w[p_1][i+1]+w[p_2][i],\]
对于\(p_2\le p_1\le i<i+1\),上式明显就是四边形不等式
综上所述,命题得证

本人证明不是很好...如有疏漏欢迎指出

代码

#include<bits/stdc++.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<complex>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define mp make_pair
#define pb push_back
#define RG register
#define il inline
using namespace std;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
const dd eps=1e-10;
const int mod=1e8;
const int N=1010;

il ll read(){
    RG ll data=0,w=1;RG char ch=getchar();
    while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
    if(ch=='-')w=-1,ch=getchar();
    while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
    return data*w;
}

il void file(){
    freopen("a.in","r",stdin);
    freopen("a.out","w",stdout);
}

int n,m,a[N],d[N],w[N][N],f[N][N],s[N][N];
int main()
{
    while(2333){
        n=read();m=read();
        if(!n&&!m)break;
        for(RG int i=1;i<=n;i++){
            d[i]=a[i]=read();d[i]*=a[i];
            a[i]+=a[i-1];d[i]+=d[i-1];
        }
        
        for(RG int i=1;i<=n;i++)
            for(RG int j=i+1;j<=n;j++){
                w[i][j]=(a[j]-a[i-1])*(a[j]-a[i-1])-(d[j]-d[i-1]);
                w[i][j]/=2;
            }
        
        memset(f,63,sizeof(f));
        
        for(RG int i=1;i<=n;i++){
            f[i][0]=w[1][i];
            for(RG int j=1;j<=min(i-1,m);j++){
                for(RG int k=s[i-1][j];k<=i-1;k++){
                    if(f[i][j]>=f[k][j-1]+w[k+1][i]){
                        f[i][j]=f[k][j-1]+w[k+1][i];
                        s[i][j]=k;
                    }
                }
            }
        }   
        printf("%d\n",f[n][m]);
    }
    return 0;
}

转载于:https://www.cnblogs.com/cjfdf/p/8585022.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值