[HDU2829]Lawrence

题面在这里

题意

英国军官劳伦斯带领一群阿拉伯国民对奥斯曼帝国进行游击队袭击。
他的主要目标是铁路。
整条铁路有\(n\)个仓库,每个仓库都有一个战略价值\(x_i\)
对于每条完整的铁路\([l,r]\),其战略价值为铁路上两两仓库的战略价值之和,即\((\sum_{k=l}^{r}x[k])^2-\sum_{k=l}^{r}x[k]^2\)
现在劳伦斯可以摧毁\(m\)条铁路,求他摧毁铁路后所有\(m+1\)段铁路战略价值之和的最小值

数据范围

\[n\le 1000,m<n,x_i\le 100,多组数据\]

sol

\(f[i][j]\)为将前\(i\)个仓库分成\(j\)段所需的最小代价,答案存在\(f[i][m+1]\)
那么\(O(n^3)\)的方程显然:
\[f[i][j]=\min_{k=j}^{i-1}{f[k][j-1]+w[k+1,i]}\]
其中\(w[i,j]=\frac{1}{2}((\sum_{k=i}^{k=j}x[i])^2-\sum_{k=i}^{k=j}x[i]^2)\)

容易发现\(w[i,j]\)满足区间包含关系单调

对于\(i\le i'\le j\le j'\),可以发现
\[(w[i,j]+w[i',j'])-(w[i,j']+w[i',j])\]
\[=(w[i,j]-w[i,j'])+(w[i',j']-w[i',j])\]
\[=-(\sum_{k=i}^{j}{x[k]})\times(\sum_{l=j+1}^{j'}{x[l]})+(\sum_{k=j+1}^{j'}{x[k]})\times(\sum_{l=i'}^{j}{x[l]})\]
\[=(\sum_{k=j+1}^{j'}{x[k]})\times(\sum_{l=i'}^{j}{x[l]}-\sum_{k=i}^{j}{x[k]})\le 0\]
\(\therefore w[i,j]+w[i',j']\le w[i,j']+w[i',j],\)\(w[i,j]\)满足平行四边形不等式

然后我们需要证明决策单调;
\(s[i][j]=max\){\(p\)|\(f[i][j]=f[p][j-1]+w[p+1][i]\)},即最大转移点
打个表可以发现\(s[i][j]\le s[i+1][j]\),证明这个就相当于把复杂度变成了\(O(n^2)\)
其实我们根据这个不等式写一发交上去就可以AC了...
其实本人在A掉这道题之前也并没有证明转移点的单调性...

那么我们现在需要证明:\(s[i][j]\le s[i+1][j]\)
\(p_1=max\){\(p\)|\(f[i][j]=f[p][j-1]+w[p+1][i]\)},
那么原式即\(\forall p_2\le p_1,\)
\(f[p_2][j-1]+w[p_2+1][i+1]\ge f[p_1][j-1]+w[p_2+1][i+1]\)
\(p_1\)的性质有\(f[p_2][j-1]+w[p_2+1][i]\ge f[p_1][j-1]+w[p_2+1][i]\)
那么只要证
\[f[p_1][j-1]+w[p_1][i]+f[p_2][j-1]+w[p_2][i+1]\]
\[\le f[p_1][j-1]+w[p_1][i+1]+f[p_2][j-1]+w[p_2][i],\]
即可(对这个式子有两行)

要证上式并不难,化简后会发现只要证
\[w[p_1][i]+w[p_2][i+1]\le w[p_1][i+1]+w[p_2][i],\]
对于\(p_2\le p_1\le i<i+1\),上式明显就是四边形不等式
综上所述,命题得证

本人证明不是很好...如有疏漏欢迎指出

代码

#include<bits/stdc++.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<complex>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define mp make_pair
#define pb push_back
#define RG register
#define il inline
using namespace std;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
const dd eps=1e-10;
const int mod=1e8;
const int N=1010;

il ll read(){
    RG ll data=0,w=1;RG char ch=getchar();
    while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
    if(ch=='-')w=-1,ch=getchar();
    while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
    return data*w;
}

il void file(){
    freopen("a.in","r",stdin);
    freopen("a.out","w",stdout);
}

int n,m,a[N],d[N],w[N][N],f[N][N],s[N][N];
int main()
{
    while(2333){
        n=read();m=read();
        if(!n&&!m)break;
        for(RG int i=1;i<=n;i++){
            d[i]=a[i]=read();d[i]*=a[i];
            a[i]+=a[i-1];d[i]+=d[i-1];
        }
        
        for(RG int i=1;i<=n;i++)
            for(RG int j=i+1;j<=n;j++){
                w[i][j]=(a[j]-a[i-1])*(a[j]-a[i-1])-(d[j]-d[i-1]);
                w[i][j]/=2;
            }
        
        memset(f,63,sizeof(f));
        
        for(RG int i=1;i<=n;i++){
            f[i][0]=w[1][i];
            for(RG int j=1;j<=min(i-1,m);j++){
                for(RG int k=s[i-1][j];k<=i-1;k++){
                    if(f[i][j]>=f[k][j-1]+w[k+1][i]){
                        f[i][j]=f[k][j-1]+w[k+1][i];
                        s[i][j]=k;
                    }
                }
            }
        }   
        printf("%d\n",f[n][m]);
    }
    return 0;
}

转载于:https://www.cnblogs.com/cjfdf/p/8585022.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值