算法导论习题[Exercises 9.3-7 ]

Describe an O(n)-time algorithm that, given a set S of n distinct numbers and a positive integer k n, determines the k numbers in S that are closest to the median of S.

solution:

算法思想:
1.找到数组a中第n/2小的数median;
2.对a中非median数进行|a[i] - median|,得到一个大小为n - 1的数组distance;
3.寻找distance中第k小的数值;
4.对distance进行一次遍历,找到小于等于k的数,从而对应得到数组a中的k个数。

1: procedure k_Closest(S, k)  //S: a set of n numbers and k: an integer
2: Output = nothing;
3: m = Select(S, n,n/2)                       //O(n)
4: for all  s in S and s != m               //O(n)
5: s.distance = |m − s|
6: end for
7: md = Select(S.distance, k)        //O(n)
8: for all s in S
9: if s.distance <= md.distance then   //O(n)
10: Output = Output + s
11: end if
12: end for
13: return Output
14: end procedure

 可见可以在线形时间能得到集合S的K个最邻近点 

转自:http://blog.csdn.net/pennyliang/article/details/1181890

转载于:https://www.cnblogs.com/freewater/archive/2011/09/07/2170349.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值