计算机等级线下培训,线上线下齐发力,助跑计算机二级考试

3月22日,信息学院举办了计算机二级培训讲座,由志愿者工作部组织,面向全校学生提供公益培训。讲座采取“讲-测-讲”模式,主讲人王宇佳、李梦玥、邢广杰分别就算法、数据结构、数据库等内容进行讲解,并通过实例与互动帮助同学们理解和掌握。参与培训的学生表示受益匪浅,认为这种形式的培训对备考计算机二级考试大有裨益。
摘要由CSDN通过智能技术生成

a7abef7c5295332ceb2b31fdebc66282.png

51d457bd4de2b83765081f8028879091.png

d9144989ca6abe45be17a5ff19469abc.png

(通讯员|张焕镖 武辰俞 李程)3月22日晚7时,我院第二期“计算机二级培训讲座”在四教C106、105如期举行,此次培训由我院青年志愿者工作部牵头,面向全校对正在准备计算机二级考试的同学进行了公益培训。

针对上一次培训中人数较多的问题,本次讲座由信息学院计算机科学与技术1603班王宇佳、1701班李梦玥、1802邢广杰三位主讲人主讲,分两个教室同时进行,此次培训采取“讲-测-讲”的模式,专题明确简洁,对重点难点进行例题讲解。讲课的过程中随机抽取同学上台做题,针对同学们做错的、有困惑的地方,再次进行详细讲解。

培训开始,李梦玥按照计算机二级考试大纲,主要讲解了算法、数据结构的概念、栈和队列、二叉树遍历、查找与排序算法、数据库等知识点。李梦玥先给同学们条理清晰地讲解了栈和队列的定义,然后让同学们做PPT课件上的习题,再针对每个习题进行讲解。其中,在对重难点二叉树遍历的讲解中,李梦玥向大家传授了用括号代替左子树与右子树的技巧来解决二叉树遍历问题,使复杂问题简单化。针对这个难题,很多同学表示十分有效。随即,李梦玥随机邀请三名同学在黑板上解出例题,并在他们做完后做出解析,条理分明,不少在座听众点头称赞。在讲到二叉树如何遍历的时候,李梦玥一个一个地讲解了根节点、子节点、兄弟节点、子树、度、深度的概念,并且把兄弟结点比喻为兄弟姐妹,十分易于理解。在讲解结束以后,有许多同学围在李梦玥和志愿者周围向她们问问题,主讲人也十分认真地回答他们的问题。

在c106教室,邢广杰、王宇佳同学的讲解同样顺利进行,培训开始之前,信息学院的志愿者们向在座的同学们发放精华版公共基础知识总结。随后,王宇佳同学开始讲解关于笛卡尔积的知识,详细介绍了并交关系、内外连接的内容。对于同学们没有搞懂的左、右外连接知识,她寻找典例耐心解释。之后,邢广杰同学先是以生动形象的表情包展示了同学们从学习之前元气满满的状态,到学习之后的崩溃无力,令讲座气氛活跃起来。根据考纲,他讲解了算法与数据结构、栈和队列、树、二叉树的基本概念和定义。对基本排序算法中的冒泡排序、选择排序、插入排序,他采用图表结合,令算法思路更加清晰。台下的同学认真听讲,做题时十分认真。

“信息学院举办的计算机二级讲座非常应时,迎合了要考计算机二级同学的需要。课件制作非常优秀,课堂主讲的小老师讲的很清楚,问题分析的很透彻,还和下面的同学有互动,时间把握的也很好,我都被那位小老师圈粉了!在讲座上,同学们跟着老师讲解的步骤认真的学习着,仔细地记着笔记,并都认真地聆听。相信这个讲座对即将参加计算机二级考试的同学会很有帮助!”来自的外国语学院宋洁同学这样对记者说到。

“这样的活动给了我们计算机专业的同学锻炼机会,把专业知识应用到志愿服务和实践活动中去,很受大家欢迎。‘计算机二级培训’更是我们院志愿服务专业化的一个特色活动。”我院青年志愿者工作部部长于畅对采访的记者说道。为了准备这次活动,信息学院青志部精心制作了讲义、背诵材料,招募了志愿者负责答疑,此外她们还建立了线上QQ群为同学们答疑解惑并不定期发布试题供参加考试的同学们练习。

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值