http://poj.org/problem?id=1155
题意:有n个点构成一棵树,节点1是广播站,2~n-m 是中转站,n-m+1~n是用户,从广播站传递信息,每经过一条边都有花费,不同的用户收听广播会支付不同的费用,
问广播站在不亏本的情况下,最多有多少用户可以收听到广播
解析:dp[i][j]表示i为根节点下j个用户收听的盈利(可以为负值)状态转移方程dp[u][i]=max(dp[u][i],dp[u][i-j]+dp[v][j]-edge[e].w);
有题解说是01背包,但是我觉得从子节点到父节点转移就是分组背包,也是按分组背包处理的
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#define inf (1<<28)
#define nMAX 3005
using namespace std;
int n,m;
int dp[nMAX][nMAX],num[nMAX],val[nMAX],head[nMAX],s_edge;
int max(int a,int b)
{
return a>b?a:b;
}
struct Edge
{
int v,w,nxt;
}edge[nMAX];
void addedge(int u,int v,int w)
{
s_edge++;
edge[s_edge].v=v;
edge[s_edge].w=w;
edge[s_edge].nxt=head[u];
head[u]=s_edge;
}
//预处理,求出num 标记叶子节点
void dfs1(int u)
{
if(u>=n-m+1){num[u]=1;return ;}//叶子节点
num[u]=0;
for(int e=head[u];e;e=edge[e].nxt)
{
int v=edge[e].v;
dfs1(v);
num[u]+=num[v];
}
}
void dfs2(int u)
{
int i,j;
if(u>=n-m+1) {dp[u][1]=val[u]; return;}
for(int e=head[u];e;e=edge[e].nxt)
{
int v=edge[e].v;
dfs2(v);
for(i=num[u];i>=0;i--)//分组背包
for(j=1;j<=num[v];j++)
{
if(i>=j)
dp[u][i]=max(dp[u][i],dp[u][i-j]+dp[v][j]-edge[e].w);
}
}
}
int main()
{
int i,j,k,v,w;
while(~scanf("%d%d",&n,&m))
{
memset(head,0,sizeof(head));
s_edge=0;
for(i=1;i<=n-m;i++)
{
scanf("%d",&j);
while(j--)
{
scanf("%d%d",&v,&w);
addedge(i,v,w);
}
}
for(i=n-m+1;i<=n;i++) scanf("%d",&val[i]);
memset(num,0,sizeof(num));
dfs1(1);//预处理
for(i=1;i<=n;i++)
for(j=0;j<=n;j++)
{
if(j==0) dp[i][j]=0;
else dp[i][j]=-inf;
}
dfs2(1);
int ans=0;
for(i=0;i<=num[1];i++)
if(dp[1][i]>=0) ans=i;
printf("%d\n",ans);
}
return 0;
}