[BZOJ1901][luogu2617]Dynamic Rankings(树状数组+主席树)

题面

单点修改,区间求第k大

分析

首先,这道题卡权值线段树套treap的做法,所以只能用主席树做

对于静态的查询,root[i]对应的主席树的区间[l,r]保存的是a[1]~a[i]有多少个值落在区间[l,r]内。如果我们要修改a[i],则要修改O(n)棵主席树。那么我们像树状数组那样维护n棵主席树,不同的是每棵主席树里保存的是,a[i-lowbit(i)+1]~a[i]有多少个值落在区间[l,r]内

对于查询[ql,qr]时的做差
我们要像树状数组求和那样,把root[i],root[i-lowbit(i)],....共O(logn)棵主席树的值加起来,才能得到a[1]~a[i]有多少个数落在1~qr里面,1~(ql-1)同理,维护两个临时数组x,y存储这O(logn)棵主席树的根即可

对于单点修改,我们像树状数组修改那样,往O(logn)棵主席树中插入即可

时间复杂度\(O(n \log ^2 n)\),空间复杂度略大,为\(O(n\log^2n)\)

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<algorithm>
#define maxn 200005
#define maxlogn 27
using namespace std;
inline void qread(int& x) {
    x=0;
    char c=getchar();
    int sign=1;
    while(c<'0'||c>'9') {
        if(c=='-') sign=-1;
        c=getchar();
    }
    while(c>='0'&&c<='9') {
        x=x*10+c-'0';
        c=getchar();
    }
    x*=sign;
}
inline void qread(char &x){
    char c=getchar();
    while(c<'A'||c>'Z'){
        c=getchar();
    }
    x=c; 
}
inline void qprint(int x) {
    if(x<0) {
        putchar('-');
        qprint(-x);
    } else if(x==0) {
        putchar('0');
        return;
    } else {
        if(x/10>0) qprint(x/10);
        putchar('0'+x%10);
    }
}

int n,m;
struct node {
    int ls;
    int rs;
    int sum;
} tree[maxn*maxlogn*maxlogn];
int root[maxn*maxlogn];
int ptr;
void push_up(int x) {
    tree[x].sum=tree[tree[x].ls].sum+tree[tree[x].rs].sum;
}
void update(int &x,int upos,int uval,int last,int l,int r) {
    x=++ptr;
    tree[x]=tree[last];
    if(l==r) {
        tree[x].sum+=uval;
        return;
    }
    int mid=(l+r)>>1;
    if(upos<=mid) update(tree[x].ls,upos,uval,tree[last].ls,l,mid);
    else update(tree[x].rs,upos,uval,tree[last].rs,mid+1,r);
    push_up(x);
}
int totx,x[maxn*maxlogn],toty,y[maxn*maxlogn];
int query(int k,int l,int r) {
    if(l==r) return l;
    int lcnt=0;
    int mid=(l+r)>>1;
    for(int i=1;i<=totx;i++){
        lcnt-=tree[tree[x[i]].ls].sum;
    }
    for(int i=1;i<=toty;i++){
        lcnt+=tree[tree[y[i]].ls].sum;
    } 
    if(k<=lcnt){
        for(int i=1;i<=totx;i++) x[i]=tree[x[i]].ls;
        for(int i=1;i<=toty;i++) y[i]=tree[y[i]].ls;
        return query(k,l,mid);
    }else{
        for(int i=1;i<=totx;i++) x[i]=tree[x[i]].rs;
        for(int i=1;i<=toty;i++) y[i]=tree[y[i]].rs;
        return query(k-lcnt,mid+1,r);
    }
}
inline int lowbit(int x){
    return x&-x;
}


struct oper {
    int type;
    int l,r,k;
    int pos,val;
    int dval;
} q[maxn];
int a[maxn];
int sz;
int b[maxn*2];

void add(int xpos,int xval,int v){
    for(int i=xpos;i<=sz;i+=lowbit(i)){
        update(root[i],xval,v,root[i],1,sz); 
    }
}
int answer(int l,int r,int k){
    totx=toty=0;
    for(int i=l-1;i;i-=lowbit(i)) x[++totx]=root[i];
    for(int i=r;i;i-=lowbit(i)) y[++toty]=root[i];
    return query(k,1,sz);
}
int main() {
    char cmd;
    qread(n);
    qread(m);
    for(int i=1; i<=n; i++) {
        qread(a[i]);
        b[++sz]=a[i];
    }
    for(int i=1; i<=m; i++) {
        qread(cmd);
        if(cmd=='Q') {
            q[i].type=0;
            qread(q[i].l);
            qread(q[i].r);
            qread(q[i].k);
        } else {
            q[i].type=1;
            qread(q[i].pos);
            qread(q[i].val);
            b[++sz]=q[i].val;
        }
    }
    sort(b+1,b+1+sz);
    sz=unique(b+1,b+1+sz)-b-1;
    for(int i=1; i<=n; i++) a[i]=lower_bound(b+1,b+1+sz,a[i])-b;
    for(int i=1; i<=m; i++) {
        if(q[i].type==1) {
            q[i].dval=lower_bound(b+1,b+1+sz,q[i].val)-b;
        }
    }
    for(int i=1; i<=n; i++) {
        add(i,a[i],1);
    }
//  T2.debug(1);
    for(int i=1; i<=m; i++) {
        if(q[i].type==0) {
            qprint(b[answer(q[i].l,q[i].r,q[i].k)]);
            putchar('\n');
        } else {
            add(q[i].pos,a[q[i].pos],-1);
            add(q[i].pos,q[i].dval,1);
            a[q[i].pos]=q[i].dval;

//          T2.debug(1);
        }
    }
}

转载于:https://www.cnblogs.com/birchtree/p/10851759.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值