数据仓库模型ETL架构(DWI/DWR/DM)

1.DWI

DWI:数据湖、数据砥柱,一般存放在HDFS

数据仓库的基础数据来源,各种杂七杂八的数据

关键点:数据清洗、数据整合、异常处理、增量获取

ETL:E-数据抽取、数据清洁、格式转换,T-生成代理键ID、遵循三范式,L-数据加载

2.DWR

DWR:数据仓库的中间层,星型结构

根据业务划分:维度数据(区域、项目、工厂等)、交易数据(存量、发货、订单等)

3.DM

DM:数据市场

按照业务组划分为9大责任中心(区域、系统部、集团、运营商、企业网、消费者、费用中心、DM Base、DM Sum、DM high level fact)

 

 

业务中正真值钱的数据应该是DM,数据分析预警等系统一般就是根据DM数据为基础做定制化分析

转载于:https://www.cnblogs.com/muphy/p/11123865.html

### 计算扩散加权成像中的纤维方向分布函数 在扩散加权成像(DWI)中,纤维方向分布函数(Fiber Orientation Distribution Function, FODF)描述了白质纤维束的方向概率密度。为了计算FODF,通常采用球面谐波展开方法来表示扩散信号。 #### 数据预处理 首先需要对原始DWI数据进行预处理,包括去除噪声和校正图像伪影。对于去噪过程,可以应用Noise2Noise算法,在同一b值下不同梯度方向的数据采集有助于提高信噪比[^1]。 #### 球面谐波分解 接着利用高角分辨率弥散成像(HARDI)获取的多方向扩散信号构建扩散张量模型。通过拟合这些信号至球面谐波基底上实现: \[ S(\theta,\phi)=\sum_{l=0}^{L}\sum_{m=-l}^{+l}a_l^mY_l^m(\theta , \phi ) \] 其中\(S\)代表测量得到的扩散衰减强度;\(Y_l^m\)为复数形式的球面调和函数;而系数\(a_l^m\)则由最小二乘法估计得出。 #### 构建FODF 基于上述球面谐波表达式,可以通过取绝对值并归一化获得非负性的FODF: \[ FODF(\theta,\phi)=|SH(\theta,\phi)|/max(|SH(\theta',\phi')|) \] 这里\(SH\)指的是经过重建后的球面谐波表示。此操作能够有效抑制背景组织贡献,并突出显示主要纤维走向。 ```python import numpy as np from dipy.reconst.shm import sh_to_sf_matrix def calculate_fodf(sh_coefficients): """ Calculate Fiber Orientation Distribution Function from SH coefficients. Parameters: sh_coefficients (ndarray): Array of spherical harmonic coefficients Returns: fodf (ndarray): Normalized fiber orientation distribution function values on a sphere grid """ B = sh_to_sf_matrix(np.arange(8), 'descoteaux07') sf = np.dot(B.T, sh_coefficients) fodf = abs(sf)/np.max(abs(sf)) return fodf ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值