bzoj1004 [HNOI2008]Cards【Burnside/Polya】

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1004

一道好题,但并不是好在融合了三个“考点”(计数,背包dp,逆元),其实背包dp以及求逆元都是小事,重点在于如何计数。

输入数据给出的m种置换是无法构成一个置换群的,因为一个群的定义需要4个性质,即封闭性,结合律,单位元,逆元,根据题目的说法,已经符合了封闭性、结合律、逆元,但是没有单位元,所以需要先添加一个新的置换,对于每个i,a[i] = i。这个置换即为单位元,这样子就构成了置换群。

然后,为什么polya对于本题不适用呢?因为本题规定的颜色数量有限(绿色只有sg个,红色只有sr个,蓝色只有sb个)。若是每种颜色都不限数量的话,因为一个置换的轮换(“轮换”就是一个括号括起来的循环节)必须是同一种颜色,这样才能在置换完成后与置换前相同。然而本题颜色数量有限,怎么办呢?如之前所说,一个轮换必须是同一种颜色,那么我们可以把这个置换的所有轮换列出来,就象这样:

(1, 2, 3), (4, 6), (5, 7), (8, 9, 10, 11), (12)

令C(ai)为置换ai的轮换的数量,既然现在不能简单的3^C(ai) (3是三种颜色),那么就考虑在当前轮换下,有三种决策,一是染成绿色,二是染成红色,三是染成蓝色——这就是一个三维的01背包!之后就简单了,在最后的最后在乘一下置换数m的逆就好了。

#include <cstdio>
#include <cstring>

int n, m, p, sr, sb, sg, a[65][65], ans, f[25][25][25], siz[65], cnt;
char book[65];

inline int cal(int * cir) {
	memset(f, 0, sizeof f);
	f[0][0][0] = 1;
	memset(book, 0, sizeof book);
	cnt = 0;
	for (int i = 1; i <= n; ++i) {
		if (!book[i]) {
			++cnt;
			book[i] = 1;
			siz[cnt] = 1;
			for (int j = cir[i]; j != i; j = cir[j]) {
				book[j] = 1;
				++siz[cnt];
			}
		}
	}
	for (int i = 1; i <= cnt; ++i) {
		for (int jr = sr; ~jr; --jr) {
			for (int jb = sb; ~jb; --jb) {
				for (int jg = sg; ~jg; --jg) {
					if (jr >= siz[i]) {
						f[jr][jb][jg] = (f[jr][jb][jg] + f[jr - siz[i]][jb][jg]) % p;
					}
					if (jb >= siz[i]) {
						f[jr][jb][jg] = (f[jr][jb][jg] + f[jr][jb - siz[i]][jg]) % p;
					}
					if (jg >= siz[i]) {
						f[jr][jb][jg] = (f[jr][jb][jg] + f[jr][jb][jg - siz[i]]) % p;
					}
				}
			}
		}
	}
	return f[sr][sb][sg];
}
inline int poww(int di, int mi) {
	int i, rt;
	for (i = 31; mi >> i & 1 ^ 1; --i);
	rt = di;
	for (--i; ~i; --i) {
		rt = rt * rt % p;
		if (mi >> i & 1) {
			rt = rt * di % p;
		}
	}
	return rt;
}

int main(void) {
	//freopen("in.txt", "r", stdin);
	scanf("%d%d%d%d%d", &sr, &sb, &sg, &m, &p);
	n = sr + sb + sg;
	for (int i = 1; i <= m; ++i) {
		for (int j = 1; j <= n; ++j) {
			scanf("%d", a[i] + j);
		}
	}
	++m;
	for (int j = 1; j <= n; ++j) {
		a[m][j] = j;
	}
	
	for (int i = 1; i <= m; ++i) {
		ans = (ans + cal(a[i])) % p;
	}
	printf("%d\n", ans * poww(m, p - 2) % p);
	return 0;
}

  

转载于:https://www.cnblogs.com/ciao-sora/p/6375883.html

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值