题目描述
YYH有一些总共有种颜色的球,他有颜色的球个。他同样有个盒子,第个盒子能放个球。
他的目标是把这个球按规则放进个盒子里:
-
对于一个盒子,对于每种颜色的球至多只能放个。
-
把颜色为的球放进盒子,他能获得的收益。
- 由于盒子有一定的额外承受能力,所以在最后,对于一个盒子,如果里面的球的数量比多了,那么YYH会有的花费。
YYH不需要把每个球都放到盒子里,他只希望他的收益与花费之差最大。
输入输出格式
第一行输入两个整数,,为球颜色个数和盒子个数。
第二行输入个整数,,分别表示每种颜色小球的个数
第三行输入个整数,,分别表示每个盒子的基础承载能力。
接下来的行每行个数,第行第个数为,表示将颜色为的球放进盒子的收益。
输出一个整数为YYH最大的收益与花费之差
这题的算法优化真是博大精深、
具体我们一个一个来讲。
我们先看这道题的算法,(这。。裸的费用流啊。。。)
然后我们发现负边(好吧,其实没有什么用。spfa可以跑)
首先所有的球都要向源点连费用0,流量为球的数量的边
然后我们考虑每一个球都要到汇点,所以从盒子向汇点连费用0,流量inf的边。
对于每一个球向每一个盒子连费用为-c(c为收益),流量为1的边。
重点来了:怎么处理多放?
我们已知一个公式 n^2-(n-1)^2=n*2-1;
所以我们从每一个盒子向汇点连流量为1,费用为2*n-1的边(一共要连n-x(x为盒子的容量)次)
最后输出-spfa_flow即可
神奇的优化:
TOP1:当前弧优化(扔了!明明跑的更慢)
TOP2:spfa优化(SLF)如果当前点的距离比队首的距离还小就将它插入队首
TOP3:快读(。。。。醉了。。)
其实还有TOP0:费用流中spfa倒着做跑的更快??(学长说的玄学优化)
然后就跑的飞快啦!
再打一个多路增广简直快的飞起
下面贴代码
#include<cstdio> #include<cstring> #define inf 0x3f3f3f3f #define r register #define min(a,b) (a)<(b)?(a):(b) #ifndef Debug #define getchar() (SS==TT&&(TT=(SS=BB)+fread(BB,1,1<<15,stdin),TT==SS)?EOF:*SS++) char BB[1<<15],*SS=BB,*TT=BB; #endif inline int read(){ r int x; r bool f; r char c; for (f=0; (c=getchar())<'0'||c>'9'; f=c=='-'); for (x=c-'0'; (c=getchar())>='0'&&c<='9'; x=(x<<3)+(x<<1)+c-'0'); return f?-x:x; } using namespace std; struct edge{ int to,next,c,w; }g[50005]; int d[501],que[5001],head[501]; bool visit[501]; int S,T,num=1; void ins(int u,int v,int c,int w){g[++num].next=head[u];head[u]=num;g[num].c=c;g[num].w=w;g[num].to=v;} void insw(int u,int v,int c,int w){ins(u,v,c,w);ins(v,u,-c,0);} bool spfa(int S,int T) { memset(visit,0,sizeof(visit)); memset(d,inf,sizeof(d)); int h=1,t=1; que[h]=T; d[T]=0; visit[T]=true; while(h<=t) { int tmp=que[h++]; for(r int i=head[tmp];i;i=g[i].next) { if(g[i^1].w&&d[tmp]-g[i].c<d[g[i].to]) { d[g[i].to]=d[tmp]-g[i].c;//d[g[i].to]=d[tmp]+g[i^1].c; if (!visit[g[i].to]) { visit[g[i].to]=true; if (d[g[i].to]<d[que[h]]) que[--h]=g[i].to;//youhua else que[++t]=g[i].to; } } }visit[tmp]=0; } return d[S]!=inf; } int dfs(int S,int T,int flow,int &ans) { visit[S]=true; if(S==T)return flow; int used=0,w; for(r int i=head[S];i;i=g[i].next) { if(!visit[g[i].to]&&g[i].w&&d[S]-d[g[i].to]==g[i].c) { if(w=dfs(g[i].to,T,min(g[i].w,flow-used),ans)) { used+=w; g[i].w-=w; g[i^1].w+=w; ans+=g[i].c*w; if(used==flow)return flow; } } } return used; } int mcf(int S,int T){ r int ans=0; while(spfa(S,T)) do memset(visit,0,sizeof(visit)); while(dfs(S,T,inf,ans)); return ans; } int main(){ r int n=read(),m=read(); S=0;T=n+m+5; r int x; for(int i=1;i<=n;i++) { x=read(); insw(S,i,0,x); insw(i,T,0,x); } for(r int i=1;i<=m;i++) { x=read(); insw(i+n,T,0,x); for(r int j=0;j<=n-x;j++)insw(i+n,T,(j<<1)|1,1); } for(r int i=1;i<=n;i++) for(r int j=1;j<=m;j++) { x=read(); insw(i,n+j,-x,1); } printf("%d\n",-mcf(S,T)); return 0; }