java乘法逆元与除法取模,数论模版 - C++实现

数论

最大公约数(GCD)/最小公倍数(LCM)

/*非递归版本求最大公约数*/

int gcd(int a,int b)

{

if(0==b) return a;

while(b>0)

{

int temp=a%b;

a=b;

b=temp;

}

return a;

//while(b^=a^=b^=a%=b)

}

/*递归版本求最大公约数*/

int gcd(int a,int b)

{

return b?gcd(b,a%b):a;

}

/*求最小公倍数*/

int lcm(int a,int b)

{

return a*b/gcd(a,b);

}

素数判断及打表

/*判断n为素数返回1,合数返回0*/

int IsPrime(int n)

{

if(n==2) return 1;

if(n%2==0||n<2) return 0;

int l=sqrt(n+1);

for(int i=3;i<=l;i+=2)

if(n%i==0) return 0;

return 1;

}

/*素数表打表 欧拉筛法*/

/*primes[] [2,N] 之间的素数 primes[0]第0位素数2*/

/*isprime[] */

const int maxn=1000007;

int primes[maxn];

int isprime[maxn];

void euler_sieve()

{

int tot=0;

memset(isprime,1,sizeof(isprime));

isprime[0]=isprime[1]=0;

for(int i=2;i<=maxn;i++)

{

if(isprime[i]) primes[tot++]=i;

for(int j=0;j

{

if(i*primes[j]>maxn) break;

isprime[i*primes[j]]=0;

if(i%primes[j]==0) break;

}

}

}

快速幂/乘取模

/*快速幂取模 (a^b)%p*/

int quickpow(int a,int b,int p)

{

int ret=1;

a%=p;

while(b)

{

if(b&1) ret=(a*ret)%p;

a=(a*a)%p;

b>>=1;

}

return ret;

}

/*快速乘法取模 (a*b)%p*/

int quickmul(int a,int b,int p)

{

int ans=0;

while(b)

{

if(b&1) {b--;ans=(ans+a)%p;}

b>>=1;

a=(a+a)%p;

}

return ans;

}

拓展欧几里得

/*拓展欧几里德 ax+by=1*/

int exgcd(int a,int b,int &x,int &y)

{

if(b==0)

{

x=1;

y=0;

return a;

}

int ans=exgcd(b,a%b,y,x);

y-=a/b*x;

return ans;

}

求乘法逆元

/*求乘法逆元(数论倒数) ax=1(modb) -> ax-1=by -> ax+by=1*/

int modinverse(int a,int b)

{

int x,y;

int d=exgcd(a,b,x,y);

return d==1?(x%b+b)%b:-1;

}

中国剩余定理(解一元线性同余方程组)

/*中国剩余定理(互质) 一元线性同余方程组 x=a(modm)*/

/*设ai,Mi为除该数外的摸数乘积,ti为Mi模mi数论倒数*/

/*ans(ai*ti*Mi)*/

/*a[],p[]模,n,长度*/

int crt(int a[],int p[],int n)

{

int muls=1;

int ret=0;

for(int i=0;i

for(int i=0;i

{

int x,y;

int mi=muls/p[i];

exgcd(mi,p[i],x,y);

ret=(ret+x*a[i]*mi)%muls;

}

return (ret+muls)%muls;

}

/*非互质,无解返回-1*/

int crt(int a[],int p[],int n)

{

if(n==1)

{

return p[0]>a[0]?a[0]:-1;

}

int x,y,d;

for(int i=1;i

{

if(p[i]<=a[i]) return -1;

d=exgcd(p[0],p[i],x,y);

if((a[i]-a[0])%d!=0) return -1;

int t=p[i]/d;

x=((a[i]-a[0])/d*x%t+t)%t;

a[0]=x*p[0]+a[0];

p[0]=p[0]*p[i]/d;

a[0]=(a[0]%p[0]+p[0])%p[0];

}

return a[0];

}

求解方程ax=b(modn)

/*求解ax=b(modn), 解的个数为gcd(a,n),返回x为vector<>*/

verctor lmodeq(int a,int b,int n)

{

int x,y;

int d=exgcd(a,n,x,y);

vector ans;

ans.clear();

if(b%d==0)

{

x=(x%n+n)%n;

x%=(n/d);

ans.push_back(x*(b/d)%(n/d));

for(int i=1;i

ans.push_back((ans[0]+i*n/d)%n);

}

return ans;

}

莫比乌斯函数求解

/*求莫比乌斯函数mu

mu={

1 ,u=1

(-1)^k ,能分解成k个不同的质因数因子

0 ,u包含平方因子

}

*/

int Mobius(int n)

{

int cnt,k=0;

for(int i=2;i*i<=n;i++)

{

if(n%i) continue;

cnt=0;

k++;

while(n%i==0)

{

n/=i;

cnt++;

}

if(cnt>=2) return 0;

}

if(n) k++;

return k%2?-1:1;

}

组合数求解(逆元求组合数/Lucas定理)

/*求组合数:数较小mod较大时,使用逆元.数较大mod较小时使用lucas*/

/*逆元求组合数*/

int exgcd(int a,int b,int &x,int &y)

{

if(b==0)

{

x=1;

y=0;

return a;

}

int ans=exgcd(b,a%b,y,x);

y-=a/b*x;

return ans;

}

int fac(int n,int p)

{

int sum=1;

for(int i=1;i<=n;i++)

{

sum=(num*i)%p;

}

return sum;

}

int comb(int n,int m,int p)

{

int a=fac(m)*fac(n-m)%p;

int x,y;

exgcd(a,p,x,y);

return ((fac(n)*x)%p+p)%p;

}

/*Lucas定理求组合数*/

int Lucas(int n,int m,int p)

{

if(m==0) return 1;

return comb(n%p,m%p,p)*Lucas(n/p,m/p,p)%p;

}

/*组合数打表 c(n,m)*/

int initcomb()

{

for(int i=0;i

{

Co[i][0]=Co[i][i]=1;

for(int j=1;j

{

Co[i][j]=(Co[i-1][j]+Co[i-1][j-1])%p;

}

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值