《产品心经》总结(第一章)

1.产品经理工作的八个核心步骤:

产品经理是产品从无到有、从有到优的最主要的负责人。

  • 用户需求与市场分析:分析市场的情况初步判断用户的需求。目标用户群是谁?用户有没有需求?用户有哪些需求痛点还没有很好地满足?有着相同或相似需求的用户数量规模是大还是小?
  • 提出差异化解决方案:要与众不同,基于用户的需求提出查一化解决方案以及提炼出带给用户的价值。
  • 传递用户价值的市场渠道分析:产品的价值如何传递给用户?用户在哪些地方可以用到这个产品?用户在哪?这么使用产品?
  • 盈亏平衡分析
  • 需求管理与产品交互涉及:产品需求文档,包括需求分析与管理及产品交互设计
  • 基于数据分析的产品迭代与调优:根据用户的反馈和数据分析,不断迭代调优产品
  • 竞争壁垒分析:自己的某一方面是别人学不来的,精华是什么,不能只看表面
  • 强有力的团队管理:需要别人协助完成自己的想法

2.培养独立思考能力

不要盲目相信、跟随附和。收集数据和资料,进行分析提出假设,然后再为假设进行现场访问,反复各种实验,最终得出合理且正确的结论。

如何培养独立思考能力?--换位思考

具有投资价值项目或产品的三个衡量标准:完美的团队;刚需;符合大趋势,顺势而为

3.创立独特的产品哲学

产品魔力 = 科技*艺术*情感。其中情感为最重要的因素,满足甚至超出用户的情感诉求预期,衡量用户与产品之间的感情深度,不在于用户使用产品后登到顶峰时的高度,而在于当用户跌倒谷底时使用产品后得到的巨大反弹力。

4.产品经理必须“入戏”,与用户交朋友

制定与用户亲密接触的规则和制度,体验用户生活,被用户灵魂附体,聆听用户的心声,倾听用户对产品的不满和抱怨,甚至吐槽。洞察用户真事的需求。

5.做一个有teste的产品人

培养自己的独特的内在气质,学会分辨和鉴赏。提升人文修养,提高审美能力和修养独特魅力

转载于:https://www.cnblogs.com/gnn0426/p/9906095.html

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值