统计学习方法 | 第3章 k邻近法

第3章 k近邻法

 

1.$k$近邻法是基本且简单的分类与回归方法。$k$近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的$k$个最近邻训练实例点,然后利用这$k$个训练实例点的类的多数来预测输入实例点的类。

2.$k$近邻模型对应于基于训练数据集对特征空间的一个划分。$k$近邻法中,当训练集、距离度量、$k$值及分类决策规则确定后,其结果唯一确定。

3.$k$近邻法三要素:距离度量、$k$值的选择和分类决策规则。常用的距离度量是欧氏距离及更一般的pL距离。$k$值小时,$k$近邻模型更复杂;$k$值大时,$k$近邻模型更简单。$k$值的选择反映了对近似误差与估计误差之间的权衡,通常由交叉验证选择最优的$k$

常用的分类决策规则是多数表决,对应于经验风险最小化。

4.$k$近邻法的实现需要考虑如何快速搜索k个最近邻点。kd树是一种便于对k维空间中的数据进行快速检索的数据结构。kd树是二叉树,表示对$k$维空间的一个划分,其每个结点对应于$k$维空间划分中的一个超矩形区域。利用kd树可以省去对大部分数据点的搜索, 从而减少搜索的计算量。

 

距离度量

 

设特征空间$x$$n$维实数向量空间 ,$x_{i}, x_{j} \in \mathcal{X}$,$x_{i}=\left(x_{i}^{(1)}, x_{i}^{(2)}, \cdots, x_{i}^{(n)}\right)^{\mathrm{T}}$,$x_{j}=\left(x_{j}^{(1)}, x_{j}^{(2)}, \cdots, x_{j}^{(n)}\right)^{\mathrm{T}}$ ,则:$x_i$,$x_j$$L_p$距离定义为:

$L_{p}\left(x_{i}, x_{j}\right)=\left(\sum_{i=1}^{n}\left|x_{i}^{(i)}-x_{j}^{(l)}\right|^{p}\right)^{\frac{1}{p}}$

  • $p= 1$ 曼哈顿距离
  • $p= 2$ 欧氏距离
  • $p= inf$ 闵式距离minkowski_distance
In [1]:
import math
from itertools import combinations 
In [2]:
def L(x, y, p=2): # x1 = [1, 1], x2 = [5,1] if len(x) == len(y) and len(x) > 1: sum = 0 for i in range(len(x)): sum += math.pow(abs(x[i] - y[i]), p) return math.pow(sum, 1 / p) else: return 0 
 

课本例3.1

In [3]:
x1 = [1, 1] x2 = [5, 1] x3 = [4, 4] 
In [4]:
# x1, x2
for i in range(1, 5): r = {'1-{}'.format(c): L(x1, c, p=i) for c in [x2, x3]} print(min(zip(r.values(), r.keys()))) 
 
(4.0, '1-[5, 1]')
(4.0, '1-[5, 1]')
(3.7797631496846193, '1-[4, 4]')
(3.5676213450081633, '1-[4, 4]')
 

python实现,遍历所有数据点,找出$n$个距离最近的点的分类情况,少数服从多数

In [5]:
import numpy as np
import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from collections import Counter 
In [6]:
# data
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names) df['label'] = iris.target df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label'] # data = np.array(df.iloc[:100, [0, 1, -1]]) 
In [7]:
df
Out[7]:
 sepal lengthsepal widthpetal lengthpetal widthlabel
05.13.51.40.20
14.93.01.40.20
24.73.21.30.20
34.63.11.50.20
45.03.61.40.20
55.43.91.70.40
64.63.41.40.30
75.03.41.50.20
84.42.91.40.20
94.93.11.50.10
105.43.71.50.20
114.83.41.60.20
124.83.01.40.10
134.33.01.10.10
145.84.01.20.20
155.74.41.50.40
165.43.91.30.40
175.13.51.40.30
185.73.81.70.30
195.13.81.50.30
205.43.41.70.20
215.13.71.50.40
224.63.61.00.20
235.13.31.70.50
244.83.41.90.20
255.03.01.60.20
265.03.41.60.40
275.23.51.50.20
285.23.41.40.20
294.73.21.60.20
..................
1206.93.25.72.32
1215.62.84.92.02
1227.72.86.72.02
1236.32.74.91.82
1246.73.35.72.12
1257.23.26.01.82
1266.22.84.81.82
1276.13.04.91.82
1286.42.85.62.12
1297.23.05.81.62
1307.42.86.11.92
1317.93.86.42.02
1326.42.85.62.22
1336.32.85.11.52
1346.12.65.61.42
1357.73.06.12.32
1366.33.45.62.42
1376.43.15.51.82
1386.03.04.81.82
1396.93.15.42.12
1406.73.15.62.42
1416.93.15.12.32
1425.82.75.11.92
1436.83.25.92.32
1446.73.35.72.52
1456.73.05.22.32
1466.32.55.01.92
1476.53.05.22.02
1486.23.45.42.32
1495.93.05.11.82

150 rows × 5 columns

In [8]:
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0') plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1') plt.xlabel('sepal length') plt.ylabel('sepal width') plt.legend() 
Out[8]:
<matplotlib.legend.Legend at 0x2c56f7f64e0>
 
In [9]:
data = np.array(df.iloc[:100, [0, 1, -1]]) X, y = data[:,:-1], data[:,-1] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) 
In [10]:
class KNN:
    def __init__(self, X_train, y_train, n_neighbors=3, p=2): """  parameter: n_neighbors 临近点个数  parameter: p 距离度量  """ self.n = n_neighbors self.p = p self.X_train = X_train self.y_train = y_train def predict(self, X): # 取出n个点 knn_list = [] for i in range(self.n): dist = np.linalg.norm(X - self.X_train[i], ord=self.p) knn_list.append((dist, self.y_train[i])) for i in range(self.n, len(self.X_train)): max_index = knn_list.index(max(knn_list, key=lambda x: x[0])) dist = np.linalg.norm(X - self.X_train[i], ord=self.p) if knn_list[max_index][0] > dist: knn_list[max_index] = (dist, self.y_train[i]) # 统计 knn = [k[-1] for k in knn_list] count_pairs = Counter(knn) # max_count = sorted(count_pairs, key=lambda x: x)[-1] max_count = sorted(count_pairs.items(), key=lambda x: x[1])[-1][0] return max_count def score(self, X_test, y_test): right_count = 0 n = 10 for X

转载于:https://www.cnblogs.com/shona/p/11320984.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值