今天去**面试碰到的一道题,当场没做出来,回来搜了一下,终于知道证法了。。(后面的图形学题目都没做出来,估计挂了 %>_<%)
网上搜了一下才知道这叫梅森质数,详情请猛击这里。
“2^n - 1是质数”是“n是质数”的充分非必要条件,即“n是质数”并不能推得“2^n - 1是质数”,例如:2^11 – 1 = 23 * 89。
所以证法如下:
设n = ab,即n是一个非质数(合数,1 < a < n), a b是正整数,则有2^ab – 1 = (2^a – 1)(2^a(b-1) + 2^a(b-2) + … + 2^a + 1),那么2^n - 1是一个非质数(合数),因为(2^n – 1) / (2^a – 1) > 1。所以“n是非质数”能推出“2^n - 1也是非质数”,即“n不是质数”是“2^n - 1不是质数”的一个充分非必要条件,其逆反命题也是真命题,即“2^n - 1是质数,则n是质数”。证毕。
扩展,如果a^n - 1是一个质数,且a n是一个大于1的正整数,则a = 2,n是质数。