@topcoder - SRM697D1L3@ ConnectedStates


@description@

有n个城市,每个城市有个权值wi,任意两个城市i,j之间的道路数有wi∗wj条。
对于每种生成树,设每个点的度数为di,其权值定义为∏di。
问所有无根生成树的权值和。答案对1e9+7取模。

Class:
ConnectedStates
Method:
getSum
Parameters:
int[]
Returns:
int
Constraints
n <= 2000

Examples
0)
{"3, 10"}
Returns: 30
1)
{"2, 2, 2"}
Returns: 96
2)
{"1, 1, 1, 1"}
Returns: 60

@solution@

考虑如果固定了生成树的形态,对应的方案应该是所有树边条数的乘积。
稍微变一变其实就是 \(\prod_{i=1}^{n}w_{i}^{d_i}\),这样就只跟点的度数有关了。

根据我们的 prufer 定理,最终答案为:
\[ans = (n-2)!*\sum_{(\sum_{i=1}^{n}d_i) = 2*n-2}(\prod_{i=1}^{n}\frac{w_{i}^{d_i}}{(d_i-1)!}*d_i)\]

如果将 i 有关的项整理到一起然后 fft 一下的时间复杂度是 O(n^2*logn),但是我们可以做到更优。

优化的思路来源在于多项式的幂公式,即:
\[(a_1 + a_2 + ... + a_n)^k = k!*\sum_{(\sum_{i=1}^{n}b_i) = k}(\prod_{i=1}^{n}\frac{a_{i}^{b_i}}{{b_i}!})\]

注意到下面这个公式和上面的答案表达式其实是很相像的,我们考虑进一步地变形:
\(a_i = d_i - 1\),得到:
\[ans = (\prod_{i=1}^{n}w_i)*(n-2)!*\sum_{(\sum_{i=1}^{n}a_i) = n-2}(\prod_{i=1}^{n}\frac{w_{i}^{a_i}}{a_i!}*(a_i+1))\]

基本就是一样了,但还有一个 \(\prod_{i=1}^{n}(a_i + 1)\) 阻碍我们。
考虑将它拆开,依次考虑每一个单项式 \(a_{p_1}*a_{p_2}*...*a_{p_m} = \prod_{j=1}^{m}a_{p_j}\) 的贡献,其中 \(1 \le p_1 < p_2 < ... < p_m \le n\)。它的贡献为:
\[\sum_{(\sum_{i=1}^{n}a_i) = n-2}(\prod_{i=1}^{n}\frac{w_{i}^{a_i}}{a_i!}* \prod_{j=1}^{m}a_{p_j})\]

考虑将这些 a 乘入阶乘中去,令得到的新的阶乘分别为 \(c_1, c_2, ... c_n\),再变一下形得到:
\[\prod_{j=1}^{m}w_{p_j}*\sum_{(\sum_{i=1}^{n}c_i) = n-2-m}(\prod_{i=1}^{n}\frac{w_{i}^{c_i}}{c_i!}) = \prod_{j=1}^{m}w_{p_j}*\frac{(\sum_{i=1}^{n}w_i)^{n-2-m}}{(n-2-m)!}\]

终于化成了我们想要的东西。
再将上面那个套入我们的答案表达式中,即可得到:
\[ans = \sum_{m=0}^{n-2}(\sum_{1 \le p_1 < p_2 < ... < p_m \le n}\prod_{j=1}^{m}w_{p_j})*\frac{(\sum_{i=1}^{n}w_i)^{n-2-m}}{(n-2-m)!}\]

中间那个看似很鬼畜的式子用 dp 处理一下就好啦。时间复杂度 O(n^2)。

@accepted code@

#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN = 2000;
const int MOD = int(1E9) + 7;
class ConnectedStates{
    public:
    int pow_mod(int b, int p) {
        int ret = 1;
        while( p ) {
            if( p & 1 ) ret = 1LL*ret*b%MOD;
            b = 1LL*b*b%MOD;
            p >>= 1;
        }
        return ret;
    }
    int dp[MAXN + 5], w[MAXN + 5], pro, n;
    int fct[MAXN + 5], ifct[MAXN + 5], pw[MAXN + 5];
    void get_ready() {
        dp[0] = 1;
        for(int i=1;i<=n;i++)
            for(int j=n;j>=1;j--)
                dp[j] = (dp[j] + 1LL*dp[j-1]*w[i]%MOD)%MOD;
        pw[0] = 1, pw[1] = 0, pro = 1;
        for(int i=1;i<=n;i++)
            pw[1] = (pw[1] + w[i])%MOD, pro = 1LL*pro*w[i]%MOD;
        for(int i=2;i<=n;i++)
            pw[i] = 1LL*pw[i-1]*pw[1]%MOD;
        fct[0] = 1;
        for(int i=1;i<=n;i++)
            fct[i] = 1LL*fct[i-1]*i%MOD;
        ifct[n] = pow_mod(fct[n], MOD - 2);
        for(int i=n-1;i>=0;i--)
            ifct[i] = 1LL*ifct[i+1]*(i+1)%MOD;
    }
    int getSum(vector<int>vec) {
        n = vec.size();
        for(int i=1;i<=n;i++)
            w[i] = vec[i-1];
        get_ready();
        int ret = 0;
        for(int i=0;i<=n-2;i++)
            ret = (ret + 1LL*dp[i]*pw[n-2-i]%MOD*ifct[n-2-i]%MOD)%MOD;
        return 1LL*ret*fct[n-2]%MOD*pro%MOD;
    }
};

@details@

当我看到这个做法的瞬间:woc 这是什么神仙操作。
果真人类智慧啊。
但我觉得这个数据范围好像fft可以过?

转载于:https://www.cnblogs.com/Tiw-Air-OAO/p/11363103.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值