1321. [ZJOI2012] 灾难
★★☆ 输入文件:catas.in
输出文件:catas.out
简单对比
时间限制:1 s 内存限制:128 MB
【问题描述】
阿米巴是小强的好朋友。
阿米巴和小强在草原上捉蚂蚱。小强突然想,如果蚂蚱被他们捉灭绝了,那
么吃蚂蚱的小鸟就会饿死,而捕食小鸟的猛禽也会跟着灭绝,从而引发一系列的
生态灾难。
学过生物的阿米巴告诉小强,草原是一个极其稳定的生态系统。如果蚂蚱灭
绝了,小鸟照样可以吃别的虫子,所以一个物种的灭绝并不一定会引发重大的灾
难。
我们现在从专业一点的角度来看这个问题。我们用一种叫做食物网的有向图
来描述生物之间的关系:
一个食物网有 N个点,代表 N 种生物,如果生物 x 可以吃生物 y,那么从 y
向 x 连一个有向边。
这个图没有环。
图中有一些点没有连出边,这些点代表的生物都是生产者,可以通过光合作
用来生存; 而有连出边的点代表的都是消费者,它们必须通过吃其他生物来生
存。
如果某个消费者的所有食物都灭绝了,它会跟着灭绝。
我们定义一个生物在食物网中的“灾难值”为,如果它突然灭绝,那么会跟
着一起灭绝的生物的种数。
举个例子:在一个草场上,生物之间的关系是:
如果小强和阿米巴把草原上所有的羊都给吓死了,那么狼会因为没有食物而
灭绝,而小强和阿米巴可以通过吃牛、牛可以通过吃草来生存下去。所以,羊的
灾难值是 1。但是,如果草突然灭绝,那么整个草原上的 5 种生物都无法幸免,
所以,草的灾难值是 4。
给定一个食物网,你要求出每个生物的灾难值。
【输入格式】
输入文件 catas.in 的第一行是一个正整数 N,表示生物的种数。生物从 1 标
号到 N。
接下来 N 行,每行描述了一个生物可以吃的其他生物的列表,格式为用空
格隔开的若干个数字,每个数字表示一种生物的标号,最后一个数字是 0 表示列
表的结束。
【输出格式】
输出文件 catas.out 包含N行,每行一个整数,表示每个生物的灾难值。
【样例输入】
5
0
1 0
1 0
2 3 0
2 0
【样例输出】
4
1
0
0
0
【样例说明】
样例输入描述了题目描述中举的例子。
【数据规模】
对 50%的数据,N ≤ 10000。
对 100%的数据,1 ≤ N ≤ 65534。
输入文件的大小不超过 1M。保证输入的食物网没有环。
1 #include <cstring> 2 #include <cstdio> 3 #include <queue> 4 #define cle(a,b) memset(a,b,sizeof a) 5 using namespace std; 6 int n; 7 struct edge 8 { 9 int v,next; 10 } e[10000000]; 11 12 int cnt; 13 int head[65538]; 14 int thead[65538]; 15 int HEAD[65538]; 16 int t,u,v; 17 int fa[65538][17],depth[65538]; 18 int cause[65538]; 19 int ts[65538],in[65538]; 20 queue<int>q; 21 22 void adde (int u,int v) 23 { 24 e[++cnt].v = v; 25 e[cnt].next = thead[u]; 26 thead[u] = cnt; 27 e[++cnt].v = u; 28 e[cnt].next = head[v]; 29 head[v] = cnt; 30 } 31 void read () 32 { 33 cle(head,-1); 34 cle(thead,-1); 35 cle(HEAD,-1); 36 scanf("%d",&n); 37 for(int i = 1; i <= n; i++) 38 { 39 while(scanf("%d",&t),t) 40 { 41 adde(t,i); 42 in[i]++; 43 } 44 } 45 } 46 void topsort () 47 { 48 t = 0; 49 for(int i = 1; i <= n; i++) 50 if(!in[i]) 51 q.push(i); 52 while(!q.empty()) 53 { 54 u = q.front(); 55 q.pop(); 56 ts[++t] = u; 57 for(int i = thead[u]; i != -1; i = e[i].next) 58 { 59 v = e[i].v; 60 in[v]--; 61 if(!in[v]) 62 q.push(v); 63 } 64 } 65 } 66 void go_up (int &u,int d) 67 { 68 int temp = 16; 69 while(d) 70 { 71 if((1 << temp) <= d) 72 { 73 d -= (1 << temp); 74 u = fa[u][temp]; 75 } 76 temp--; 77 } 78 } 79 int lca (int u,int v) 80 { 81 if(depth[u] != depth[v]) 82 go_up(u,depth[u] - depth[v]); 83 if(u == v) 84 return u; 85 int temp = 17; 86 do 87 { 88 if(fa[u][--temp] != fa[v][temp]) 89 { 90 u = fa[u][temp]; 91 v = fa[v][temp]; 92 } 93 } 94 while(temp); 95 return fa[v][0]; 96 } 97 void ADDE (int u,int v) 98 { 99 e[++cnt].v = v; 100 e[cnt].next = HEAD[u]; 101 HEAD[u] = cnt; 102 } 103 void build () 104 { 105 for(int i = 1; i <= n; i++) 106 { 107 t = -1; 108 for(int j = head[ts[i]]; j != -1; j = e[j].next) 109 { 110 if(t == -1) 111 t = e[j].v; 112 else t = lca( depth[t] > depth[e[j].v] ? t : e[j].v , depth[t] > depth[e[j].v] ? e[j].v : t ); 113 } 114 fa[ts[i]][0] = t == -1 ? 0 : t; 115 depth[ts[i]] = depth[t] + 1; 116 ADDE(t,ts[i]); 117 for(int j = 1; j <= 16; j++) 118 fa[ts[i]][j] = fa[fa[ts[i]][j - 1]][j - 1]; 119 } 120 } 121 void dfs (int U) 122 { 123 for(int i = HEAD[U]; i != -1; i = e[i].next) 124 { 125 dfs(e[i].v); 126 cause[U] += cause[e[i].v] + 1; 127 } 128 } 129 int main () 130 { 131 freopen("catas.in","r",stdin); 132 freopen("catas.out","w",stdout); 133 read(); 134 topsort(); 135 build(); 136 for(int i = 1; i <= n; i++) 137 if(depth[i] == 1) 138 dfs(i); 139 for(int i = 1; i <= n; i++) 140 printf("%d\n",cause[i]); 141 return 0; 142 }