描述
我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串。
FBI树是一种二叉树1,它的结点类型也包括F结点,B结点和I结点三种。由一个长度为2^N的“01”串S可以构造出一棵FBI树T,递归的构造方法如下:
1) T的根结点为R,其类型与串S的类型相同;
2) 若串S的长度大于1,将串S从中间分开,分为等长的左右子串S1和S2;由左子串S1构造R的左子树T1,由右子串S2构造R的右子树T2。
现在给定一个长度为2^N的“01”串,请用上述构造方法构造出一棵FBI树,并输出它的后序遍历2序列。
格式
输入格式
输入的第一行是一个整数N(0<=N<=10),第二行是一个长度为2^N的“01”串。
输出格式
输出包括一行,这一行只包含一个字符串,即FBI树的后序遍历序列。
样例1
样例输入1
3
10001011
样例输出1
IBFBBBFIBFIIIFF
限制
每个测试点1s
来源
NOIP2004普及组第三题
1 /* 2 小小递归耗我青春 3 */ 4 #include<cstdio> 5 #include<cstring> 6 #include<iostream> 7 #define MAXN 1050 8 9 using namespace std; 10 11 int n,len; 12 13 char s[MAXN]; 14 15 inline void read(int&x) { 16 x=0;int f=1; char c=getchar(); 17 while(c<'0'||c>'9'){if(c=='-') f=-1;c=getchar();} 18 while(c>='0'&&c<='9'){x=(x<<1)+(x<<3)+c-'0';c=getchar();} 19 x=x*f; 20 } 21 22 inline char judge(int l,int r) { 23 bool _f0=false,_f1=false; 24 if(l==r) { 25 if(s[l]=='1') return 'I'; 26 else if(s[l]=='0') return 'B'; 27 } 28 else { 29 for(int i=l;i<=r;i++) { 30 if(s[i]=='0') _f0=true; 31 if(s[i]=='1') _f1=true; 32 } 33 if(_f0&&!_f1) return 'B'; 34 else if(!_f0&&_f1) return 'I'; 35 else return 'F'; 36 } 37 } 38 39 inline void dfs(int left,int right) { 40 if(left==right) { 41 cout<<judge(left,right); 42 return; 43 } 44 int mid=(left+right)>>1; 45 dfs(left,mid); 46 dfs(mid+1,right); 47 cout<<judge(left,right); 48 return; 49 } 50 51 int main() { 52 read(n); 53 scanf("%s",s+1); 54 len=strlen(s+1); 55 dfs(1,len); 56 return 0; 57 }