[SDOI2008]郁闷的小JJ
题目描述
小J是国家图书馆的一位图书管理员,他的工作是管理一个巨大的书架。虽然他很能吃苦耐劳,但是由于这个书架十分巨大,所以他的工作效率总是很低,以致他面临着被解雇的危险,这也正是他所郁闷的。
具体说来,书架由N个书位组成,编号从1到N。每个书位放着一本书,每本书有一个特定的编码。
小J的工作有两类:
1.图书馆经常购置新书,而书架任意时刻都是满的,所以只得将某位置的书拿掉并换成新购的书。
2.小J需要回答顾客的查询,顾客会询问某一段连续的书位中某一特定编码的书有多少本。
例如,共5个书位,开始时书位上的书编码为1,2,3,4,5
一位顾客询问书位1到书位3中编码为“2”的书共多少本,得到的回答为:1
一位顾客询问书位1到书位3中编码为“1”的书共多少本,得到的回答为:1
此时,图书馆购进一本编码为“1”的书,并将它放到2号书位。
一位顾客询问书位1到书位3中编码为“2”的书共多少本,得到的回答为:0
一位顾客询问书位1到书位3中编码为“1”的书共多少本,得到的回答为:2
……
你的任务是写一个程序来回答每个顾客的询问。
输入输出格式
输入格式:
第一行两个整数N,M,表示一共N个书位,M个操作。
接下来一行共N个整数数A1,A2…AN,Ai表示开始时位置i上的书的编码。
接下来M行,每行表示一次操作,每行开头一个字符
若字符为‘C’,表示图书馆购进新书,后接两个整数A(1<=A<=N),P,表示这本书被放在位置A上,以及这本书的编码为P。
若字符为‘Q’,表示一个顾客的查询,后接三个整数A,B,K(1<=A<=B<=N),表示查询从第A书位到第B书位(包含A和B)中编码为K的书共多少本。
输出格式:
对每一个顾客的查询,输出一个整数,表示顾客所要查询的结果。
输入输出样例
如果输入了
5 5
1 2 3 4 5
Q 1 3 2
Q 1 3 1
C 2 1
Q 1 3 2
Q 1 3 1
应该要输出
1
1
0
2
说明
对于100%的数据,1<=N,M<=100000
对于100%的数据,所有出现的书的编码为不大于2147483647的正数。
treap大模板题
(话说这样的题目都只能是模板题吧)
先把书编码离散化
对每一种书都种一棵treap 这对array选手不友好啊
之后还是熟悉的操作
代码蒯上
#include<iostream>
#include<iomanip>
#include<cmath>
#include<map>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
inline int gotcha()
{
register int _a=0;bool _b=1;register char _c=getchar();
while(_c<'0' || _c>'9'){if(_c=='-')_b=0;_c=getchar();}
while(_c>='0' && _c<='9')_a=_a*10+_c-48,_c=getchar();
return _b?_a:-_a;
}
#define ml make_pair
const int _ = 100002;int seed=19260817;
inline int ou(){return seed=seed*47281ll%2147483647;}
typedef struct node* point;
point null;
struct node
{
int rn,sz,d;
point lc,rc;
node(int got){d=got,rn=ou(),sz=1,lc=rc=null;}
inline void up(){sz=lc->sz+rc->sz+1;}
inline void del(){if(this!=null)lc->del(),rc->del(),delete this;}
};
point root[_];int bk[_],lmp=0,m,n;
map<int,int> mp;
inline point merge(point a,point b)
{
if(a==null)return b;if(b==null)return a;
if(a->rn<b->rn){a->rc=merge(a->rc,b),a->up();return a;}
else{b->lc=merge(a,b->lc),b->up();return b;}
}
inline pair<point,point> split(point now,int num)
{
if(now==null)return ml(null,null);
point lc=now->lc,rc=now->rc;
if(now->lc->sz==num){now->lc=null,now->up();return ml(lc,now);}
if(now->lc->sz+1==num){now->rc=null,now->up();return ml(now,rc);}
if(num<now->lc->sz)
{
pair<point,point> T=split(now->lc,num);
now->lc=T.second,now->up();
return ml(T.first,now);
}
else
{
pair<point,point> T=split(now->rc,num-now->lc->sz-1);
now->rc=T.first,now->up();
return ml(now,T.second);
}
}
int time_finder(int kind,int num)
{
int s=0,t=2e9;point now=root[kind];
while(now!=null)
{
if(num==now->d)t=min(t,s+now->lc->sz+1);
if(num<=now->d)now=now->lc;
else s+=now->lc->sz+1,now=now->rc;
}
return t==2e9?s:t;
}
void insert(int num){if(mp.find(num)==mp.end())mp[num]=++lmp;}
int main()
{
mp.clear();
register int i,j,k;register char op;
n=gotcha(),m=gotcha();
null=new node(0),null->sz=0;
for(i=0;i<_;i++)root[i]=null;
for(i=1;i<=n;i++)
{
j=gotcha();
insert(j),bk[i]=mp[j],root[bk[i]]=merge(root[bk[i]],new node(i));
}
while(m--)
{
op=getchar();while(op!='C' && op!='Q')op=getchar();
if(op=='Q')
{
i=gotcha()-1,j=gotcha(),k=gotcha();
insert(k),k=mp[k];
printf("%d\n",time_finder(k,j)-time_finder(k,i));
}
else
{
i=gotcha(),k=bk[i];
pair<point,point> a,b;
a=split(root[k],time_finder(k,i)-1),b=split(a.second,1);
delete b.first;
root[k]=merge(a.first,b.second);
k=gotcha(),insert(k);
bk[i]=mp[k],k=mp[k];
a=split(root[k],time_finder(k,i));
root[k]=merge(a.first,merge(new node(i),a.second));
}
}
for(i=0;i<_;i++)root[i]->del();delete null;
return 0;
}