题面
题解
虚树+dp
关于虚树
了解一下
- 具体实现
inline void insert(int x) {
if (top == 1) {s[++top] = x; return ;}
int lca = query(x, s[top]);
while (top > 1 && dfn[s[top-1]] >= dfn[lca]) t[s[top-1]].push_back(s[top]), top--;
if (lca != s[top]) t[lca].push_back(s[top]), s[top] = lca;
s[++top] = x;
return ;
}
bool cmp(int a, int b) {
return dfn[a] < dfn[b];
}//dfn为在dfs序上的位置
main() {//o为输入的关键点
sort(o+1, o+1+k, cmp);
s[top = 1] = 1;
for (int i = 1; i <= k; i++) insert(o[i]);
for (int i = 1; i < top; i++) t[s[i]].push_back(s[i+1]);
}
然后对于这个虚树\(dp\)
\(a\)数组表示当前点到根这条链路径最小值
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
inline int gi() {
RG int x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-'0', c = getchar();
return f ? -x : x;
}
const int N = 250010, INF = 2147483647;
struct node {
int to, next, w;
}g[N<<1];
int last[N], gl;
inline void add(int x, int y, int z) {
g[++gl] = (node) {y, last[x], z};
last[x] = gl;
return ;
}
int anc[N][21], dfn[N], cnt, dep[N], a[N];
void init(int u, int fa) {
anc[u][0] = fa;
dfn[u] = ++cnt;
for (int i = 1; i <= 20; i++)
anc[u][i] = anc[anc[u][i-1]][i-1];
for (int i = last[u]; i; i = g[i].next) {
int v = g[i].to;
if (v == fa) continue;
dep[v] = dep[u]+1;
a[v] = min(g[i].w, a[u]);
init(v, u);
}
return ;
}
inline int query(int x, int y) {
if (dep[x] < dep[y]) swap(x, y);
for (int i = 20; i >= 0; i--)
if (dep[anc[x][i]] >= dep[y])
x = anc[x][i];
if (x == y) return x;
for (int i = 20; i >= 0; i--)
if (anc[x][i] != anc[y][i])
x = anc[x][i], y = anc[y][i];
return anc[x][0];
}
vector<int> t[N];
int o[N], s[N], top;
bool cmp(int a, int b) {
return dfn[a] < dfn[b];
}
inline void insert(int x) {
if (top == 1) {s[++top] = x; return ;}
int lca = query(x, s[top]);
if (lca == s[top]) return ;//祖先都走不到,它肯定也走不到哈
while (top > 1 && dfn[s[top-1]] >= dfn[lca]) t[s[top-1]].push_back(s[top]), top--;
if (lca != s[top]) t[lca].push_back(s[top]), s[top] = lca;
s[++top] = x;
return ;
}
LL dp(int u) {
LL S = 0;
if (!t[u].size()) return a[u];
for (int i = 0; i < (int)t[u].size(); i++) {
int v = t[u][i];
S += dp(v);
}
t[u].clear();
if (u==1) return S;
return min(S, 1ll*a[u]);
}
int main() {
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
int n = gi();
for (int i = 1; i < n; i++) {
int x = gi(), y = gi(), z = gi();
add(x, y, z); add(y, x, z);
}
a[1] = INF;
init(1, 0);
int m = gi();
while (m--) {
int k = gi();
for (int i = 1; i <= k; i++)
o[i] = gi();
sort(o+1, o+1+k, cmp);
s[top = 1] = 1;
for (int i = 1; i <= k; i++) insert(o[i]);
for (int i = 1; i < top; i++)
t[s[i]].push_back(s[i+1]);
printf("%lld\n", dp(1));
}
return 0;
}