【网络流24题】 No.15 汽车加油行驶问题 (分层图最短路i)

【题意】

  问题描述:
给定一个 N*N 的方形网格,设其左上角为起点◎, 坐标为( 1, 1), X 轴向右为正, Y
轴向下为正, 每个方格边长为 1, 如图所示。 一辆汽车从起点◎出发驶向右下角终点▲,其
坐标为( N, N)。 在若干个网格交叉点处, 设置了油库, 可供汽车在行驶途中加油。 汽车在
行驶过程中应遵守如下规则:
(1)汽车只能沿网格边行驶,装满油后能行驶 K 条网格边。出发时汽车已装满油, 在起
点与终点处不设油库。
(2)汽车经过一条网格边时, 若其 X 坐标或 Y 坐标减小, 则应付费用 B, 否则免付费用。
(3)汽车在行驶过程中遇油库则应加满油并付加油费用 A。
(4)在需要时可在网格点处增设油库,并付增设油库费用 C(不含加油费用 A)。
(5)(1)~(4)中的各数 N、 K、 A、 B、 C 均为正整数, 且满足约束: 2 <=N <= 100, 2 <= K <= 10。
设计一个算法, 求出汽车从起点出发到达终点的一条所付费用最少的行驶路线。

 

输入文件示例
input.txt
9 3 2 3 6
0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 1 0 0
1 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1
1 0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0

输出文件示例
output.txt
12

 

【分析】

  每天智障24小时again。。

  我在纠结要是建了加油站 又走回那个点怎么破。。。

  傻逼才走回以前那个点。。。

  对,傻逼就是我。。  

  k很小,直接表示在状态里面,那么。。分层图最短路。。

 

 1 #include<cstdio>
 2 #include<cstdlib>
 3 #include<cstring>
 4 #include<iostream>
 5 #include<algorithm>
 6 #include<queue>
 7 #include<cmath>
 8 using namespace std;
 9 #define Maxn 110
10 #define INF 0xfffffff
11 
12 int n,k,A,B,C;
13 bool g[Maxn][Maxn];
14 
15 int mymin(int x,int y) {return x<y?x:y;}
16 
17 void init()
18 {
19     scanf("%d%d%d%d%d",&n,&k,&A,&B,&C);
20     for(int i=1;i<=n;i++)
21      for(int j=1;j<=n;j++)
22      {
23          int x;
24          scanf("%d",&x);
25          if(x==1) g[i][j]=1;
26          else g[i][j]=0;
27      }
28 }
29 
30 int bx[6]={0,1,0,-1,0},
31     by[6]={0,0,1,0,-1},
32     cs[6];
33 
34 struct node
35 {
36     int x,y,z;
37 };
38 int dis[Maxn][Maxn][15];
39 bool inq[Maxn][Maxn][15];
40 queue<node > q;
41 void spfa()
42 {
43     while(!q.empty()) q.pop();
44     memset(dis,63,sizeof(dis));
45     memset(inq,0,sizeof(inq));
46     node ft;
47     int ans=INF;
48     ft.x=1,ft.y=1,ft.z=k;
49     q.push(ft);dis[1][1][k]=0;inq[1][1][k]=1;
50     cs[1]=cs[2]=0;cs[3]=cs[4]=B;
51     while(!q.empty())
52     {
53         node now=q.front();
54         int x=now.x,y=now.y,z=now.z;
55         for(int i=1;i<=4;i++) if(x+bx[i]>=1&&x+bx[i]<=n&&y+by[i]>=1&&y+by[i]<=n)
56         {
57             node nn;
58             int c=cs[i]+dis[x][y][z];
59             nn.x=x+bx[i];nn.y=y+by[i];nn.z=z-1;
60             if(nn.x==n&&nn.y==n) {ans=mymin(ans,c);continue;}
61             if(g[nn.x][nn.y]) nn.z=k,c+=A;
62             if(nn.z==0) nn.z=k,c+=C+A;
63             if(c<dis[nn.x][nn.y][nn.z])
64             {
65                 dis[nn.x][nn.y][nn.z]=c;
66                 if(!inq[nn.x][nn.y][nn.z])
67                 {
68                     q.push(nn);
69                     inq[nn.x][nn.y][nn.z]=1;
70                 }
71             }
72         }
73         q.pop();inq[x][y][z]=0;
74     }
75     printf("%d\n",ans);
76 }
77 
78 int main()
79 {
80     init();
81     spfa();
82     return 0;
83 }
View Code

 

还挺好打,只是像我这种不用脑子大代码的就要调试很久。。

 

 

2016-11-06 19:45:09

 

转载于:https://www.cnblogs.com/Konjakmoyu/p/6036099.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1.问题描述 给定一个N*N 的方形网格,设其左上角为起点,坐标为(1,1),X 轴向右为正,Y 轴 向下为正,每个方格边长为1。一辆汽车起点出发驶向右下角终点,其坐标为(N,N)。 在若干个网格交叉点处,设置了库,可供汽车行驶途中加油汽车行驶过程中应遵守 如下规则: (1)汽车只能沿网格边行驶,装满后能行驶K 条网格边。出发时汽车已装满,在 起点终点处不设库。 (2)当汽车行驶经过一条网格边时,若其X 坐标或Y 坐标减小,则应付费用B,否则 免付费用。 (3)汽车行驶过程中遇库则应加满并付加油费用A。 (4)在需要时可在网格点处增设库,并付增设库费用C(不含加油费用A)。 (5)(1)~(4)中的各数N、K、A、B、C均为正整数。 算法设计: 求汽车起点出发到达终点的一条所付费用最少的行驶路线。 数据输入: 输入数据。第一行是N,K,A,B,C的值,2 <= N <= 100, 2 <= K <= 10。第二行起是一个N*N 的0-1方阵,每行N 个值,至N+1行结束。方阵的第i 行第j 列处的值为1 表示在网格交叉点(i,j)处设置了一个库,为0 时表示未设库。 各行相邻的2 个数以空格分隔。 结果输出: 将找到的最优行驶路线所需的费用,即最小费用输出. Sample input 9 3 2 3 6 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 Sample output 12

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值