题目描述
尼克每天上班之前都连接上英特网,接收他的上司发来的邮件,这些邮件包含了尼克主管的部门当天要完成的全部任务,每个任务由一个开始时刻与一个持续时间构成。
尼克的一个工作日为N分钟,从第一分钟开始到第N分钟结束。当尼克到达单位后他就开始干活。如果在同一时刻有多个任务需要完成,尼克可以任选其中的一个来做,而其余的则由他的同事完成,反之如果只有一个任务,则该任务必需由尼克去完成,假如某些任务开始时刻尼克正在工作,则这些任务也由尼克的同事完成。如果某任务于第P分钟开始,持续时间为T分钟,则该任务将在第P+T-1分钟结束。
写一个程序计算尼克应该如何选取任务,才能获得最大的空暇时间。
输入输出格式
输入格式:
输入数据第一行含两个用空格隔开的整数N和K(1≤N≤10000,1≤K≤10000),N表示尼克的工作时间,单位为分钟,K表示任务总数。
接下来共有K行,每一行有两个用空格隔开的整数P和T,表示该任务从第P分钟开始,持续时间为T分钟,其中1≤P≤N,1≤P+T-1≤N。
输出格式:
输出文件仅一行,包含一个整数,表示尼克可能获得的最大空暇时间。
输入输出样例
输入样例#1:
复制
15 6 1 2 1 6 4 11 8 5 8 1 11 5
输出样例#1:
复制
4
求什么设什么 容易想到 dp【i】为 0-i的最大空闲时间 正序
但是一个决策点是 任务的开头 而任务又有一个状态为持续时间 所有正序dp兼顾不到所有
那么就倒叙dp dp【i】为i-m的最大空闲时间
如果没有遇到任务开头的话 dp【i】=dp【i+1】+1;
如果遇到任务开头:
遍历以该时刻为起始点的所有任务 选择最大的
dp【i】=max(dp【i】,dp【i+该任务的持续时间】)
为了拿出该时刻的任务 这题可以用一个非常巧妙的预处理:见代码
#include<bits/stdc++.h> using namespace std; //input #define rep(i,x,y) for(int i=(x);i<=(y);++i) #define RI(n) scanf("%d",&(n)) #define RII(n,m) scanf("%d%d",&n,&m); #define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k) #define RS(s) scanf("%s",s) #define LL long long #define REP(i,N) for(int i=0;i<(N);i++) #define CLR(A,v) memset(A,v,sizeof A) // #define N 10005 #define inf -0x3f3f3f3f struct node { int s,e; }s[N]; bool cmp(node a,node b) { return a.s>b.s; } int sum[N]; int dp[N]; int main() { int m,n; RII(m,n); rep(i,1,n) { RII(s[i].s,s[i].e); sum[s[i].s ]++; } int cnt=1; sort(s+1,s+1+n,cmp); for(int i=m;i>=1;i--) { if(sum[i]==0)dp[i]=dp[i+1]+1; else { rep(j,1,sum[i]) { dp[i]=max(dp[i],dp[i+s[cnt++].e] );//直接这样就好了 因为一开始dp【i】为0 } } } cout<<dp[1]<<endl; return 0; }