cf459E Pashmak and Graph

 

E. Pashmak and Graph
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Pashmak's homework is a problem about graphs. Although he always tries to do his homework completely, he can't solve this problem. As you know, he's really weak at graph theory; so try to help him in solving the problem.

You are given a weighted directed graph with n vertices and m edges. You need to find a path (perhaps, non-simple) with maximum number of edges, such that the weights of the edges increase along the path. In other words, each edge of the path must have strictly greater weight than the previous edge in the path.

Help Pashmak, print the number of edges in the required path.

Input

The first line contains two integers nm (2 ≤ n ≤ 3·105; 1 ≤ m ≤ min(n·(n - 1), 3·105)). Then, m lines follows. The i-th line contains three space separated integers: uiviwi (1 ≤ ui, vi ≤ n; 1 ≤ wi ≤ 105) which indicates that there's a directed edge with weight wi from vertex ui to vertex vi.

It's guaranteed that the graph doesn't contain self-loops and multiple edges.

Output

Print a single integer — the answer to the problem.

Sample test(s)
input
3 3
1 2 1
2 3 1
3 1 1
output
1
input
3 3
1 2 1
2 3 2
3 1 3
output
3
input
6 7
1 2 1
3 2 5
2 4 2
2 5 2
2 6 9
5 4 3
4 3 4
output
6
Note

In the first sample the maximum trail can be any of this trails: .

In the second sample the maximum trail is .

In the third sample the maximum trail is .

 

题意是给定n个点m条边,求一条最长路径,使得路径上的边的权值严格递增

这题原来是ccr给的代码,但是实际上还是挺水的……我觉得最难的是A和C啊QAQ

先把边按权值排序,然后令f[i]表示以i结尾的路径的最大长度

然后一条一条加进去就好了

以下ccr的代码

#include<bits/stdtr1c++.h>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef pair<int, int> pi;
typedef double ld;
typedef struct edge{
    int f, t, v;
    bool operator<(const edge& e) const{
        return v < e.v;
    }
}edge;
const int N = 3e5 + 50;
int ans[N];
vector< pi > w;
int main() {
    int n, m, a, b, c;
    vector< edge > v;
    cin >> n >> m;
    for(int i = 0; i < m; i++){
        cin >> a >> b >> c;
        edge e = {a, b, c};
        v.push_back(e);
    }
    sort(v.begin(), v.end());

    int i = 0, j;
    while( i < v.size()){
        j = i;
        while(j < v.size() && v[j].v == v[i].v){
            if(ans[v[j].f] + 1 > ans[v[j].t]) w.push_back(pi(v[j].t, ans[v[j].f] + 1));
            j++;
        }
        for(int q = 0; q < w.size(); q++){
            ans[w[q].first] = max(ans[w[q].first], w[q].second);
        }
        i = j;
        w.clear();
    }
    cout << *max_element(ans, ans + N) << endl;
}

转载于:https://www.cnblogs.com/zhber/p/4035916.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值