排序二叉树的实现和我的一个数据结构设计

一。基本概念

二叉排序树又称二叉搜索树,即在树的任何一个结点,都满足左子树小于根,根小于右子树。排序二叉树可以作为Map的关键码。主要的作用是快速的查找(相当于二分法)

 

二。基本算法

1.查找

查找时,首先和根结点对比,若相等,则查找成功。若大于根,则再向右子树查找;如果小于根,则向根的左子树查找;依次类推,直到查找成功或者遇到空结点。

2.插入

找到要插入的位置,类似于上面查找的方式,将新结点插入到查找到的左子树或者右子树。

3.删除

1.当要删除结点不存在左子树,直接将要删除结点的右子树赋给要删除点的父结点的相应子结点

2.当要删除的结点存在左子树,在此结点的左子树中,查找到关键码最大的一个结点r,将r的右指针指要要删除点的右子树,用要删除点的左子树代替要删除点

 

三。具体代码

 声明

View Code
 1 template<class KEY> 
2 class BinSearchTree
3 {
4 public:
5 BinSearchTree(KEY k)
6 {
7 llink = NULL;
8 rlink = NULL;
9 key = k;
10 }
11 public:
12 KEY key;
13 BinSearchTree* llink;
14 BinSearchTree* rlink;
15
16
17 int search(KEY key,BinSearchTree<KEY>** position);
18 int insert(KEY key);
19 int delete_node(KEY key);
20 };

 

 实现

View Code
 1 template<class KEY>
2 int BinSearchTree<KEY>::search(KEY key,BinSearchTree<KEY>** pos)
3 {
4 BinSearchTree* p = this;
5
6
7 while(p){
8 *pos = p;
9 if(p->key == key){
10 *pos = p;
11 return 1;
12 }
13 else if(p->key > key ){
14 p = p->llink;
15 }
16 else{
17 p = p->rlink;
18 }
19 }
20
21 return 0;
22 }
23 template<class KEY>
24 int BinSearchTree<KEY>::insert(KEY key)
25 {
26 BinSearchTree* pos = NULL;
27 if(search(key,&pos) == 1){
28 return -1;//查找到相同的key
29 }
30 BinSearchTree* p = new BinSearchTree(key);
31 //如果pos null,说明是空树
32 if(!pos){
33 pos = p;
34 }
35 else if( pos->key > key ){
36 pos->llink = p;
37 }
38 else{
39 pos->rlink = p;
40 }
41
42 return 0;
43 }
44 template<class KEY>
45 int BinSearchTree<KEY>::delete_node(KEY key)
46 {
47 BinSearchTree* p = this; //需要查找的结点
48 BinSearchTree* parent = NULL; //要查找的点的父结点
49
50 while(p){
51 if( key == p->key ){
52 break;
53 }
54 parent = p;//在向下个结点遍历前,将本结点设置为父结点
55
56 if( key > p->key ){
57 p = p->rlink;
58 }
59 else{
60 p = p->llink;
61 }
62 }
63 if( !p ){
64 return -1;
65 }
66
67 //1.如果没有左子树,则直接被删除结点用右子树代替
68 if(!p->llink){
69 if(parent->llink == p){
70 parent->llink = p->rlink;
71 }
72 else if(parent->rlink == p){
73 parent->rlink = p->rlink;
74 }
75 delete p;
76 return 0;
77 }
78 //2.如果有有左子树,则找到左子树里最大的结点,将其右子树设置成要查找的子树的右子树。并将欲查找的子树用它的左子树代替
79 BinSearchTree* r = NULL;//r为要查找的结点的左子树的最远端右子树
80 r = p->llink;
81 while(r->rlink)r = r->rlink;
82
83 r->rlink = p->rlink;
84
85 if(parent->llink == p){
86 parent->llink = p->llink;
87 }
88 else if(parent->rlink == p){
89 parent->rlink = p->llink;
90 }
91
92
93 }

 

四。我的新设计

 

1.使用一个顺序结构存储(比如数组)实际对象 假设叫做list

2.使用一个二叉排序树tree存储list中存储的元素(每个元素是一个对象)的指针或者引用。

3.每次对list添加,删除时,对tree都要做相应的操作

 

优点:

相当于实现了一个简单的map,可以使用两种方式定位数据对象。比如游戏中存储玩家类,大部分时间是通过id取得玩家对象的,即通过list(索引号)的方式,但同时也可能存在使用名字取得玩家对象的情况,可以把名字存在tree中。tree只是list的一个数据映射,耗费较少的内存。当然,直接使用map<名字,索引号>的方式也是可以的。

还有一个优点是可以比较方便的查找到最大和最小值。

缺点:

不能插入重复的数据。

缺点:

转载于:https://www.cnblogs.com/fox7nights/archive/2012/01/11/2319665.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值