之前学习过内部排序的八大算法,也一一写过代码实现。其中堆排序的原理是
- 将一颗二叉树初始化为堆
- 依次将最后一个结点与堆顶结点交换。然后调整堆顶元素位置,重置堆。
将二叉树初始化为堆可以看做从最后一个非叶子结点开始,依次调整子堆的堆顶元素,重置堆是指重置堆顶元素。
这种算法的实现如下:
<?php
#堆排序
function heapSort(&$arr) {
#初始化大顶堆
initHeap($arr);
#开始交换首尾节点,并每次减少一个末尾节点再调整堆,直到剩下一个元素
for($end = count($arr) - 1; $end >= 0; $end--) {
$temp = $arr[0];
$arr[0] = $arr[$end];
$arr[$end] = $temp;
ajustNodes($arr, 0, $end - 1);
}
}
#初始化最大堆,从最后一个非叶子节点开始,最后一个非叶子节点编号为 数组长度/2 向下取整
function initHeap(&$arr) {
$len = count($arr);
for($start = floor($len / 2) - 1; $start > 0; $start--) {
ajustNodes($arr, $start, $len - 1);
}
}
#调整节点
#@param $arr 待调整数组
#@param $start 调整的父节点坐标
#@param $end 待调整数组结束节点坐标
function ajustNodes(&$arr, $start, $end) {
$maxInx = $start;
$len = $end + 1; #待调整部分长度
$leftChildInx = ($start + 1) * 2 - 1; #左孩子坐标
$rightChildInx = ($start + 1) * 2; #右孩子坐标
#如果待调整部分有左孩子
if($leftChildInx + 1 <= $len) {
#获取最小节点坐标
if($arr[$maxInx] < $arr[$leftChildInx]) {
$maxInx = $leftChildInx;
}
#如果待调整部分有右子节点
if($rightChildInx + 1 <= $len) {
if($arr[$maxInx] < $arr[$rightChildInx]) {
$maxInx = $rightChildInx;
}
}
}
#交换父节点和最大节点
if($start != $maxInx) {
$temp = $arr[$start];
$arr[$start] = $arr[$maxInx];
$arr[$maxInx] = $temp;
#如果交换后的子节点还有子节点,继续调整
if(($maxInx + 1) * 2 <= $len) {
ajustNodes($arr, $maxInx, $end);
}
}
}
$arr = array(1, 5, 3, 7, 9 ,10, 2, 8);
heapSort($arr);
print_r($arr);
?>
现在学了SPL这种神器,看下如何实现堆排序:
<?php
function splHeapSort($arr){
$heap = new SplMinHeap();
//初始化小顶堆
foreach ($arr as $v){
$heap->insert($v);
}
while(!$heap->isEmpty()){
$res[] = $heap->extract();
}
return $res;
}
$arr = array(2,5,9,1,4,7,3,4,6,0,1,2,4,6,8,9,2,3);
$arr = splHeapSort($arr);
print_r($arr);
?>
什么!!!这么简单??对,就是这么简单,不要问为什么,强大,任性!