EM算法——Expectation-Maximization

最大似然估计

  一个栗子:假如去赌场,但是不知道能不能赚钱,你就在门口堵着出来一个人就问一个赚了还是赔了,如果问了5个人都说赚了,那么你就会认为,赚钱的概率肯定是非常大的。

  已知:(1)样本服从分部的模型,(2)观测到的样本

  求解:模型的参数

  总的来说:极大似然估计就是用来估计模型参数的统计学方法

最大似然的数学问题(100名学生的身高问题)

  样本集X = {x1, x2 ,...,xN} N = 100

  概率密度:p(xi|θ)抽到男生i(的身高)的概率

  θ是服从分部的参数

  独立同分布:同时抽到这100个男生的概率就是他们各自概率的乘积

  最大似然函数:

   (对数是为了乘法转加法)

  什么样的参数θ能够使得出现当前这批样本的概率最大

  已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。

问题又难了一步

  现在这100个人中,不光有男生,还有女生(2个类别,2种参数)

  男生和女生的身高都服从高斯分布,但是参数不同(均值,方差)

  用数学的语言描述:抽取得到的每个样本都不知道是从哪个分布抽取的

  求解目标:男生和女生对应的身高的高斯分布的参数是多少

  加入隐变量

    用Z = 0或Z = 1标记样本来自哪个分部,则Z就是隐变量

    最大似然函数:

      

    求解:在给定初始值情况下进行迭代求解

EM算法

  EM算法推导:

  问题:样本集{x(1),...,x(m)},包含m个独立的样本。其中每个样本i对应的类别z(i)是未知的,所以很难用最大似然求解。

  

  上式中,要考虑每个样本在各个分布中的情况。本来正常求偏导就可以了,但是现在log后面还有求和,这就难解了!

  右式分子分母同时乘:

    

  这么做就是为了凑Jensen不等式(Q(z)是Z的分布函数)

Jensen不等式

  设f是定义域为实数的函数,如果对于所有的实数x。

  如果对于所有的实数x,f(x)的二次导数大于等于0,那么f是凸函数。

  如果f是凸函数,X是随机变量,那么:E[f(X)] > = f(E[X])

  

  实线f是凸函数,X有0.5的概率是a,有0.5的概率是b,X的期望值就是a和b的中值了

  Jensen不等式应用于凹函数时,不等号方向反向

  由于:

    是 的期望

  假设则:

  可得:

    

  结论:

    

  下届比较好求,所以我们要优化这个下界来使得似然函数最大

  优化下届,迭代到收敛

    

  Jensen中等式成立的条件是随机变量是常数:

    

  Q(z)是z的分部函数:

    

  所有的分子和等于常数C(分母相同)

Q(z)求解

  

  由上式可得C就是p(xi,z)对z求和

  

  Q(z)代表第i个数据是来自zi的概率

EM算法流程

  初始化分布参数Θ

  E-step:根据参数Θ计算每个样本属于zi的概率(也就是Q)

  M-step:根据Q,求出含有Θ的似然函数的下界并最大化它,得到新的参数Θ

  不断的迭代更新

GMM(高斯混合模型)

  数据可以看作是从数个Gaussian Distribution中生成出来的

  GMM由K个Gaussian分布组成,每个Gaussian称为一个“Component”

  类似k-means方法,求解方式跟EM一样

  不断的迭代更新 

转载于:https://www.cnblogs.com/hellojack/p/7808106.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值