Model
前向传播
反向传播
求误差
求\({\theta}^3_{11}\)对J的影响
求\({\theta}^2_{11}\)对J的影响
误差反传
每一层的残差都由后一层的残差乘以两层之间的权重矩阵,再乘以当前层的激活函数的导数得到。
权重梯度由前面的激活值和后面的残差乘积得到的
a = 1
参考:
深度学习 — 反向传播(BP)理论推导 - 简书
Backpropagation 算法的推导与直观图解 - 文之 - 博客园
每一层的残差都由后一层的残差乘以两层之间的权重矩阵,再乘以当前层的激活函数的导数得到。
权重梯度由前面的激活值和后面的残差乘积得到的
a = 1
参考:
深度学习 — 反向传播(BP)理论推导 - 简书
Backpropagation 算法的推导与直观图解 - 文之 - 博客园
转载于:https://www.cnblogs.com/lzwhard/p/11211762.html