深度学习基础--反向传播推导

Model

1745737-20190719102955592-2011729221.png

前向传播

1745737-20190719103019475-857396129.png

反向传播

求误差

1745737-20190719103026845-292672344.png

\({\theta}^3_{11}\)对J的影响

1745737-20190719103040679-1992150945.png
1745737-20190719103046864-1633431660.png

\({\theta}^2_{11}\)对J的影响

1745737-20190719103053763-1478852888.png

1745737-20190719103112566-1916004450.png

误差反传

1745737-20190719103119593-1697949573.png

1745737-20190719103125306-1670298703.png
1745737-20190719103132379-1237975263.png

每一层的残差都由后一层的残差乘以两层之间的权重矩阵,再乘以当前层的激活函数的导数得到。
权重梯度由前面的激活值和后面的残差乘积得到的

a = 1

参考:
深度学习 — 反向传播(BP)理论推导 - 简书
Backpropagation 算法的推导与直观图解 - 文之 - 博客园

转载于:https://www.cnblogs.com/lzwhard/p/11211762.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值