MATLAB模拟退火遗传算法,[原创]基于遗传算法模拟退火举例

这段代码演示了如何在MATLAB中实现遗传算法和模拟退火算法的结合,用于求解优化问题。通过设定不同的参数,如种群大小、最大迭代次数、选择、交叉和变异概率等,程序会不断迭代优化目标函数,并最终找到最佳解。目标函数为Rastrigin's函数,结果会输出最佳的X1和X2值。
摘要由CSDN通过智能技术生成

function SA_GA_Example()

clc;

clear all

ub_lb=[-5 -5;5 5];

%  种群

%  基于遗传算法的参数设置

Population=40;

MaxIteration=20;

SelectionProbability=0.9;

CrossoverProbability=0.7;

MutationProbability=0.01;

NumberofIndividuals=2;

Precision=20;

%  基于模拟退火算法的参数设置

Temp=90;

a=0.97;

T_end=3;

%  用于跟踪遗传算法最优的变量和解值

TraceY=zeros(MaxIteration,1);

TraceX=zeros(MaxIteration,NumberofIndividuals);

%  用于跟踪模拟退火的最优变量和解值

BestY=100;

BestX=100*ones(1,2);

%  建立区域扫描区间

FielD=[repmat(Precision,1,NumberofIndividuals);ub_lb;repmat([1;0;1;1],1,NumberofIndividuals)];

%  初始化染色体

Chromsome=CRTBP(Population,NumberofIndividuals*Precision);

%  将二进制数转化为十进制数

X=BS2RV(Chromsome,FielD);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值