BZOJ5287 HNOI2018毒瘤(虚树+树形dp)

  显然的做法是暴力枚举非树边所连接两点的选或不选,大力dp。考场上写的是最暴力的O(3n-mn),成功比大众分少10分。容斥或者注意到某些枚举是不必要的就能让底数变成2。但暴力的极限也就到此为止。

  每次重新dp做了大量重复的事,考虑从减少重复计算方面优化。先跑一遍没有限制的树形dp。将非树边所连接的点拎出来建一棵虚树。注意到虚树中某点对其父亲的贡献系数(也即由该点到其父亲的链上点的dp值与其关系)是不变的,那么dp出系数,依旧暴力枚举非树边就可以了。一定程度上与noip2018d2t3有相似之处?

  码起来非常长(虽然似乎并没有很难写),可能是我姿势不对。注意暴力枚举非树边时不应标记其是否强制被选,而是标记强制被选的次数,防止回溯时出问题。

#include<iostream> 
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100050
#define P 998244353
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
    int x=0,f=1;char c=getchar();
    while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    return x*f;
}
int n,m,p[N],f[N][2],id[N][2],dfn[N],size[N],fa[N][19],deep[N],num[N][2][2],tmp[2][2],tot,cnt,t,u,ans=0;
bool vis[N],flag[N];
struct data{int to,nxt;
}edge[N<<1];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
int ksm(int a,int k)
{
    int s=1;
    for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
    return s;
}
int inv(int a){return ksm(a,P-2);}
void dfs(int k)
{
    vis[k]=1;f[k][0]=f[k][1]=1;dfn[k]=++tot;size[k]=1;
    for (int i=p[k];i;i=edge[i].nxt)
    if (edge[i].to!=fa[k][0])
        if (vis[edge[i].to])
        {
            flag[k]=flag[edge[i].to]=1;bool tag=1;
            for (int j=1;j<=cnt;j++) if (id[j][0]==edge[i].to&&id[j][1]==k) {tag=0;break;}
            if (tag) cnt++,id[cnt][0]=k,id[cnt][1]=edge[i].to;
        }
        else
        {
            fa[edge[i].to][0]=k;
            deep[edge[i].to]=deep[k]+1;
            dfs(edge[i].to);
            f[k][0]=1ll*f[k][0]*(f[edge[i].to][0]+f[edge[i].to][1])%P,
            f[k][1]=1ll*f[k][1]*f[edge[i].to][0]%P;
            size[k]+=size[edge[i].to];
        }
}
int lca(int x,int y)
{
    if (deep[x]<deep[y]) swap(x,y);
    for (int j=18;~j;j--) if (deep[fa[x][j]]>=deep[y]) x=fa[x][j];
    if (x==y) return x;
    for (int j=18;~j;j--) if (fa[x][j]!=fa[y][j]) x=fa[x][j],y=fa[y][j];
    return fa[x][0];
}
namespace virtual_tree
{
    int m,p[N],t,g[N][2],point[N],stk[N],top,cho[N];
    struct data{int to,nxt;}edge[N<<1];
    void addedge(int x,int y){t++;flag[x]=flag[y]=1;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
    bool cmp(const int&a,const int&b){return dfn[a]<dfn[b];}
    void build()
    {
        for (int i=1;i<=n;i++) if (flag[i]) point[++m]=i;
        sort(point+1,point+m+1,cmp);
        stk[top=1]=1;
        for (int i=(point[1]==1)+1;i<=m;i++)
        {
            int x=lca(point[i],stk[top]);
            if (x==stk[top]) stk[++top]=point[i];
            else
            {
                while (top>1&&deep[stk[top-1]]>=deep[x])
                addedge(stk[top-1],stk[top]),top--;
                if (stk[top]!=x) addedge(x,stk[top--]),stk[++top]=x;
                stk[++top]=point[i];
            }
        }
        while (top>1) addedge(stk[top-1],stk[top]),top--;
    }
    void copy(int k)
    {
        g[k][0]=f[k][0],g[k][1]=f[k][1];
        for (int i=p[k];i;i=edge[i].nxt)
        {
            copy(edge[i].to);
            g[k][0]=1ll*g[k][0]*inv((1ll*num[edge[i].to][0][0]*f[edge[i].to][0]+1ll*num[edge[i].to][0][1]*f[edge[i].to][1])%P)%P;
            g[k][1]=1ll*g[k][1]*inv((1ll*num[edge[i].to][1][0]*f[edge[i].to][0]+1ll*num[edge[i].to][1][1]*f[edge[i].to][1])%P)%P;
        }
    }
    void dp(int k)
    {
        if (cho[k]) g[k][0]=0;
        for (int i=p[k];i;i=edge[i].nxt)
        {
            dp(edge[i].to);
            g[k][0]=1ll*g[k][0]*((1ll*num[edge[i].to][0][0]*g[edge[i].to][0]+1ll*num[edge[i].to][0][1]*g[edge[i].to][1])%P)%P;
            g[k][1]=1ll*g[k][1]*((1ll*num[edge[i].to][1][0]*g[edge[i].to][0]+1ll*num[edge[i].to][1][1]*g[edge[i].to][1])%P)%P;
        }
    }
    int getans()
    {
        copy(1);
        dp(1);
        return (g[1][0]+g[1][1])%P;
    }
    void dfs(int k,int s)
    {
        if (k>cnt) {ans=((ans+s*getans())%P+P)%P;return;}
        cho[id[k][0]]++,cho[id[k][1]]++;dfs(k+1,-s);
        cho[id[k][0]]--,cho[id[k][1]]--;dfs(k+1,s);
    }
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("bzoj5287.in","r",stdin);
    freopen("bzoj5287.out","w",stdout);
    const char LL[]="%I64d\n";
#else
    const char LL[]="%lld\n";
#endif
    n=read(),m=read();
    for (int i=1;i<=m;i++)
    {
        int x=read(),y=read();
        addedge(x,y),addedge(y,x);
    }
    fa[1][0]=1;deep[1]=1;dfs(1);
    for (int j=1;j<19;j++)
        for (int i=1;i<=n;i++)
        fa[i][j]=fa[fa[i][j-1]][j-1];
    virtual_tree::build();
    for (int i=1;i<=n;i++) if (flag[i]) virtual_tree::point[++u]=i;
    for (int j=1;j<=u;j++)
    {
        int i=virtual_tree::point[j];
        num[i][0][0]=num[i][1][1]=1;
        if (i!=1)
        {
            int x=fa[i][0],y=i;
            do
            {
                tmp[0][0]=(num[i][0][0]+num[i][1][0])%P,tmp[0][1]=(num[i][0][1]+num[i][1][1])%P,
                tmp[1][0]=num[i][0][0],tmp[1][1]=num[i][0][1];
                num[i][0][0]=tmp[0][0],num[i][0][1]=tmp[0][1],num[i][1][0]=tmp[1][0],num[i][1][1]=tmp[1][1];
                if (!flag[x])
                for (int k=p[x];k;k=edge[k].nxt)
                if (edge[k].to!=y&&edge[k].to!=fa[x][0])
                {
                    num[i][0][0]=1ll*num[i][0][0]*(f[edge[k].to][1]+f[edge[k].to][0])%P;
                    num[i][0][1]=1ll*num[i][0][1]*(f[edge[k].to][1]+f[edge[k].to][0])%P;
                    num[i][1][0]=1ll*num[i][1][0]*f[edge[k].to][0]%P;
                    num[i][1][1]=1ll*num[i][1][1]*f[edge[k].to][0]%P;
                }
                y=x,x=fa[x][0];
            }while(!flag[y]);
        }
    }
    virtual_tree::dfs(1,1);
    cout<<ans;
    return 0;
}

 

转载于:https://www.cnblogs.com/Gloid/p/10123973.html

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值