初入TensorFlow————配置TensorFlow

能看到这说明你对python已经有一定的了解了,因此很多基础直接跳过。

一、TensorFlow环境配置:

TensorFlow的环境配置在网上很多的教程都是用anaconda的方式,但是很容易出现冲突,而且问题也不是很好解决,因此不建议使用anaconda。建立一个新的pythonvirtual的环境,专门用来做TensorFlow,由于pycharm可以继承于原来的环境,因此有些库也会继承下来,即使没有也可以用pip的指令来完成安装,直接进入python的新建的虚拟环境。输入【pip install tensorflow】。


二、实例

完成安装后输入 【activate TensorFlow】进入界面。

 

输入python进入python界面导入包,如果出错重新安装调试。

成功后输入一下代码:

import tensorflow as tf
# tf.Session()封装了tensorflow的信息
sess = tf.Session()
# constant是获取输入的内容
hello = tf.constant('初入tensorflow!请多指教')
# 直接sess.run() 输出的是二进制信息,因此需要编码一下
print(sess.run(hello))
print(sess.run(hello).decode('utf-8'))

 

三、结果呈现

 

 四、总结

开始学习tensorflow,遇到了环境配置问题,最后新建了一个虚拟环境专门用来中tensorflow的内容,即使在pycharm中也是可以完成环境的转换。

转载于:https://www.cnblogs.com/future-dream/p/10693449.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值