[SCOI2006] 数字立方体

题目类型:三维前缀和+同余方程

传送门:>Here<

题意:给出一个立方体,求有多少个子立方体的和为\(k\)的倍数

解题思路

暴力做法:\(O(n^6)\)枚举子立方体

考虑只枚举长和宽,为了简化问题,我们可以将问题表示成:

给定一个矩阵,求有多少个子矩阵的和为\(M\)的倍数

我们可以不必枚举宽,仅仅用\(O(n^2)\)枚举长,然后对于给定的行数,维护一个前缀和\(s[i]\)。于是一个子矩阵的和就可以表示为\(s[r]-s[l-1]\)。考虑一下何时这个子矩阵是\(M\)的倍数?用同余方程描述,就是\[s[r]-s[l-1]≡0 \ (mod \ M)\]也就是\[s[l-1]≡s[r] \ (mod \ M)\]于是我们只需要维护一个桶表示目前为止\(s[r]==i\)的个数就可以了

推广到立方体,改一下前缀和的计算公式就可以了
\(s[i][j][k] = s[i-1][j][k] + s[i][j-1][k] - s[i-1][j-1][k] + s[i][j][k-1] - s[i-1][j][k-1] - s[i][j-1][k-1] + s[i-1][j-1][k-1] + a[i][j][k]\)

反思

注意这道题问的是\(M\)的倍数,有关和,而且涉及倍数——一个前缀和,一个数论,就都可以解决了。

Code

注意循环变量的初始值。由于如果每次把桶清零非常耗时,一个优化是只清当前这轮涉及到的。当前这轮最多涉及到\(N\)个,因此非常快。

/*By DennyQi 2018*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <map>
#include <algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 10010;
const int MAXM = 20010;
const int INF = 1061109567;
inline int Max(const int a, const int b){ return (a > b) ? a : b; }
inline int Min(const int a, const int b){ return (a < b) ? a : b; }
inline int read(){
    int x = 0; int w = 1; register char c = getchar();
    for(; c ^ '-' && (c < '0' || c > '9'); c = getchar());
    if(c == '-') w = -1, c = getchar();
    for(; c >= '0' && c <= '9'; c = getchar()) x = (x<<3) + (x<<1) + c - '0'; return x * w;
}
ll Ans;
int N,M,K;
int a[45][45][45],s[45][45][45],sum[45],cnt[1000010];
int main(){
//  freopen(".in","r",stdin);
    N = read(), M = read();
    for(int i = 1; i <= N; ++i){
        for(int j = 1; j <= N; ++j){
            for(int k = 1; k <= N; ++k){
                a[i][j][k] = read();
                s[i][j][k] = ((s[i-1][j][k] + s[i][j-1][k] - s[i-1][j-1][k] + s[i][j][k-1] - s[i-1][j][k-1] - s[i][j-1][k-1] + s[i-1][j-1][k-1] + a[i][j][k]) % M + M) % M;
            }
        }
    }
    for(int i = 1; i <= N; ++i){
        for(int j = i; j <= N; ++j){
            for(int p = 1; p <= N; ++p){
                for(int q = p; q <= N; ++q){
                    cnt[0] = 1;
                    for(int k = 1; k <= N; ++k){
                        sum[k] = ((s[j][q][k]-s[i-1][q][k]-s[j][p-1][k]+s[i-1][p-1][k]) % M + M) % M;
                        Ans += 1ll * cnt[sum[k]];
                        cnt[sum[k]]++;
                    }
                    for(int k = 1; k <= N; ++k) cnt[sum[k]] = 0;        
                }
            }
            
        }
    }
    printf("%lld", Ans);
    return 0;
}

转载于:https://www.cnblogs.com/qixingzhi/p/9866546.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值