Clough-Tocher

Clough-Tocher插值技术是一种源于有限元方法的技术,它首先将离散点三角化形成临时TIN,然后在每个三角形上定义双变量多项式,创建一系列三角形表面补丁。该技术速度快,能够快速处理大量离散点集,并倾向于提供平滑的插值表面。
摘要由CSDN通过智能技术生成

Clough-Tocher

The Clough-Tocher interpolation technique is often referred to in the literature as a finite element method because it has origins in the finite element method of numerical analysis. Before any points are interpolated, the scatter points are first triangulated to form a temporary TIN. A bivariate polynomial is defined over each triangle, creating a surface made up of a series of triangular Clough-Tocher surface patches.

clip_image001

The Twelve Parameters Used to Define the Clough-Tocher Triangle

The Clough-Tocher patch is a cubic polynomial defined by twelve parameters shown in the following figure: the function values, f, and the first derivatives, fx & fy, at each vertex, and the normal derivatives, , at the midpoint of the three edges in the triangle (Clough & Tocher, 1965; Lancaster & Salkauskas, 1986). The first derivatives at the vertices are estimated using the average slopes of the surrounding triangles. The element is partitioned into three subelements along seams defined by the centroid and the vertices of the triangle.

A complete cubic polynomial of the form:

clip_image002

is created over each sub-triangle with slope continuity across the seams and across the boundaries of the triangle. Second derivative continuity is not maintained across the seams of the triangle.

Since the Clough-Tocher scheme is a local scheme, it has the advantage of speed. Even very large scatter point sets can be interpolated quickly. It also tends to give a smooth interpolating surface which brings out local trends in the dataset quite accurately.

Since a TIN only covers the convex hull of a scatter point set, extrapolation beyond the convex hull is not possible with the Clough-Tocher interpolation scheme. Any points outside the convex hull of the scatter point set are assigned the default extrapolation value entered at the bottom of the Interpolation Options dialog.

源文档 <http://www.xmswiki.com/wiki/GMS:Clough-Tocher>

转载于:https://www.cnblogs.com/sunliming/p/4155181.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值