题面
\(Solution:\)
一开始想的是先跑一遍最短路,然后拆点之后再跑一遍,比较两次dis,然后发现拆点后会有负环(可能是我没想对拆点的方法),于是就放弃了拆点法。
我们考虑强制让每头牛选择走一条最短的,有草堆的路径,然后比较单纯的最短路。
然后就想到了分层图
,在每一个有草垛的点向第二维图对应的点连一条单向的,权值为-美味值
的边,这样第二维图上的dis就是每头牛选择走一条最短,有草堆的路径长度,再和第一维比较即可.注意有负边,跑某死亡算法.
\(Source\)
#include <set>
#include <queue>
#include <cmath>
#include <cctype>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <assert.h>
#include <algorithm>
using namespace std;
#define fir first
#define sec second
#define pb push_back
#define mp make_pair
#define LL long long
#define INF (0x3f3f3f3f)
#define mem(a, b) memset(a, b, sizeof (a))
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define Debug(x) cout << #x << " = " << x << endl
#define travle(i, x) for (register int i = head[x]; i; i = nxt[i])
#define For(i, a, b) for (register int (i) = (a); (i) <= (b); ++ (i))
#define Forr(i, a, b) for (register int (i) = (a); (i) >= (b); -- (i))
#define file(s) freopen(s".in", "r", stdin), freopen(s".out", "w", stdout)
#define ____ debug("go\n")
namespace io {
static char buf[1<<21], *pos = buf, *end = buf;
inline char getc()
{ return pos == end && (end = (pos = buf) + fread(buf, 1, 1<<21, stdin), pos == end) ? EOF : *pos ++; }
inline int rint() {
register int x = 0, f = 1;register char c;
while (!isdigit(c = getc())) if (c == '-') f = -1;
while (x = (x << 1) + (x << 3) + (c ^ 48), isdigit(c = getc()));
return x * f;
}
inline LL rLL() {
register LL x = 0, f = 1; register char c;
while (!isdigit(c = getc())) if (c == '-') f = -1;
while (x = (x << 1ll) + (x << 3ll) + (c ^ 48), isdigit(c = getc()));
return x * f;
}
inline void rstr(char *str) {
while (isspace(*str = getc()));
while (!isspace(*++str = getc()))
if (*str == EOF) break;
*str = '\0';
}
template<typename T>
inline bool chkmin(T &x, T y) { return x > y ? (x = y, 1) : 0; }
template<typename T>
inline bool chkmax(T &x, T y) { return x < y ? (x = y, 1) : 0; }
}
using namespace io;
const int N = 5e4 + 2, M = 1e5 + 2;
int n, m, k;
int dis[N<<1];
namespace Gragh {
int head[N<<1], ver[(M<<2) + N], nxt[(M<<2) + N], tot, edge[(M<<2) + N];
inline void add(int u, int v, int w) {
ver[++tot] = v, edge[tot] = w, nxt[tot] = head[u], head[u] = tot;
}
} using namespace Gragh;
bool vis[N<<1];
void SPFA(int st) {
queue<int> q;
memset(dis, 0x3f, sizeof dis);
q.push(st);
dis[st] = 0;
vis[st] = 1;
while (q.size()) {
int u = q.front(); q.pop(); vis[u] = 0;
for (register int i = head[u]; i; i = nxt[i]) {
if (dis[ver[i]] > dis[u] + edge[i]) {
dis[ver[i]] = dis[u] + edge[i];
if (!vis[ver[i]]) {
vis[ver[i]] = 1;
q.push(ver[i]);
}
}
}
}
}
int main() {
#ifndef ONLINE_JUDGE
file("Fine_Dining");
#endif
n = rint(), m = rint(), k = rint();
For (i, 1, m) {
int u = rint(), v = rint(), w = rint();
add(u, v, w); add(v, u, w);
add(u + n, v + n, w); add(v + n, u + n, w);
}
For (i, 1, k) {
int u = rint(), val = rint();
add(u, u + n, -val);
}
SPFA(n);
for (register int i = 1; i < n; ++ i) if (dis[i] >= dis[i + n]) {
puts("1");
} else puts("0");
}