前言
项目车号识别过程中,车体有三种颜色黑车黑底白字、红车红底白字、绿车黄底绿字,可以通过判断车体的颜色信息,从而判断二值化是否需要反转,主要是基于rgb2hsv函数进行不同颜色的阈值判断。
matlab代码可参考:
http://www.cnblogs.com/happyamyhope/p/6650920.html
与matlab中的rgb2hsv函数功能相同的opencv代码:
vector<Mat> rgb2hsv(Mat image){ vector<Mat> image_rgb; vector<Mat> hsv(3); split(image, image_rgb); Mat B = (Mat_<double>)image_rgb.at(0) / 255; Mat G = (Mat_<double>)image_rgb.at(1) / 255; Mat R = (Mat_<double>)image_rgb.at(2) / 255; Mat_<double> H(image.rows, image.cols, 1); Mat_<double> S(image.rows, image.cols, 1); Mat_<double> V(image.rows, image.cols, 1); for (int m = 0; m <image.rows; m++) { for (int n = 0; n < image.cols; n++) { double var_B = B.at<double>(m, n);//image.at<cv::Vec3b>(j,i)[0];;B.data[m, n] double var_G = G.at<double>(m, n); double var_R = R.at<double>(m, n); //double var_Min=0; //double var_Max=100; double var_Min = min(var_R, min(var_G, var_B)); //Min. value of RGB double var_Max = max(var_R, max(var_G, var_B)); //Max. value of RGB double del_Max = var_Max - var_Min; //Delta RGB value V.at<double>(m, n) = var_Max; if (del_Max == 0.0) //This is a gray, no chroma... { H.at<double>(m, n) = 0.0; //HSV results from 0 to 1 S.at<double>(m, n) = 0.0; } else //Chromatic data... { if (var_Max == 0.0) { S.at<double>(m, n) = 0.0; } else{ S.at<double>(m, n) = del_Max / var_Max; } if (var_R == var_Max) H.at<double>(m, n) = (var_G - var_B) / del_Max; else if (var_G == var_Max) H.at<double>(m, n) = 2 + (var_B - var_R) / del_Max; else if (var_B == var_Max) H.at<double>(m, n) = 4 + (var_R - var_G) / del_Max; H.at<double>(m, n) /= 6; if (H.at<double>(m, n) < 0) H.at<double>(m, n) += 1.0; } } } // end for hsv.at(0) = H; hsv.at(1) = S; hsv.at(2) = V; return hsv; }
子函数程序代码:
bool isGreen(Mat image){ vector< Mat > hsv_vec;//Mat M(7,7,CV_32FC2,Scalar(1,3)); //判断图像非空 if (image.channels() < 3) { std::cout << "ROI Image Error! " << std::endl; return false; } ofstream outfile("E:\\carriage_recognition\\train_identification\\ROI1095\\HSV.xls"); Mat h = hsv_vec.at(0)*180; Mat s = hsv_vec.at(1)*255; Mat v = hsv_vec.at(2)*255; unsigned int green = 0; unsigned int yellow = 0; double hout = 0; double sout = 0; double vout = 0; double ratio_g = 0; double ratio = 0; for (int m = 0; m < image.rows; m++) { for (int n = 0; n < image.cols; n++) { hout = h.at<double>(m, n); sout = s.at<double>(m, n); vout = v.at<double>(m, n); if ((hout >= 40 && hout <= 75) && (sout >= 60) && (vout >= 55)) green++; else if ((hout >= 27 && hout <= 33) && (sout >= 60) && (vout >= 80)) yellow++; //cout << m << "\t" << n << "\t" << hout << "\t" << sout << "\t" << vout << endl; outfile << m << "\t" << n << "\t" << hout << "\t" << sout << "\t" << vout << "\t"; outfile << endl; } //outfile << endl; } ratio_g = (double)green * 100 / (image.rows*image.cols); ratio = (double)(green + yellow) * 100 / (image.rows*image.cols); if ( ratio > 0.04 && ratio_g > 0.0004 ) return true; else return false; }
主程序代码:
/************************************************************************ * Copyright(c) 2016 ZRJ * All rights reserved. * * File: isGreen.cpp * Brief: * Version: 1.0 * Author: ZRJ * Email: happyamyhope@163.com * Date: 2017/03/29 * History: * 20170329: 颜色识别; ************************************************************************/ //------------------------------------------------------------------------- //头文件 #include <iostream> #include <vector> #include<time.h> #include <fstream> #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" using namespace cv; using namespace std; //----------------------------------------------------------------------- //调参 //--------------------------------------------------------------------------------- //函数声明 bool isGreen(Mat image); vector<Mat> rgb2hsv(Mat image); //----------------------------------------------------------------------------------------- //函数定义 int main(int argc, char** argv) { char image_path[500]; char green_path[500]; ///处理图像 for (int i = 1; i <= 1095; i++) { //获取图像帧 cout << i << endl; sprintf(image_path, "E:\\carriage_recognition\\train_identification\\ROI1095\\ROI原图\\%d_number_ROI.png", i); sprintf(green_path, "E:\\carriage_recognition\\train_identification\\ROI1095\\green原图\\%d_number_ROI.png", i); Mat image = imread(image_path, 1); bool flag = isGreen( image ); if ( flag ) imwrite(green_path, image); }//end for //clock_t end = clock(); //double interval = (double)(end - begin) / CLOCKS_PER_SEC; //cout << "处理图像耗时: " << interval << endl; return 0; }
问题总结:
1.opencv中的cvtColor(image, hsv, CV_BGR2HSV, 0);语句与matlab函数的输出数据类型有些微差别;
2.自己编写的rgb2hsv函数的运行速度很慢,难以保证实际场景的实时性,后续需要优化;
3.rgb2hsv的公式转换问题,需要仔细研读matlab函数代码;
也可参考:http://www.easyrgb.com/index.php?X=MATH&H=20#text20
4.将数据保存在.xls中,方便与matlab的输出结果进行比较;
完