C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市。任意两个
城市之间最多只有一条道路直接相连。这 m 条道路中有一部分为单向通行的道路,一部分
为双向通行的道路,双向通行的道路在统计条数时也计为 1 条。
C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价
格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。
商人阿龙来到 C 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息
之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 C 国 n 个城
市的标号从 1~ n,阿龙决定从 1 号城市出发,并最终在 n 号城市结束自己的旅行。在旅游的
过程中,任何城市可以重复经过多次,但不要求经过所有 n 个城市。阿龙通过这样的贸易方
式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品——水晶球,并在之后经过的另
一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 C 国旅游,他决定
这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。
假设 C 国有 5 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路
为单向通行,双向箭头表示这条道路为双向通行。
假设 1~n 号城市的水晶球价格分别为 4,3,5,6,1。
阿龙可以选择如下一条线路:1->2->3->5,并在 2 号城市以 3 的价格买入水晶球,在 3
号城市以 5 的价格卖出水晶球,赚取的旅费数为 2。
阿龙也可以选择如下一条线路 1->4->5->4->5,并在第 1 次到达 5 号城市时以 1 的价格
买入水晶球,在第 2 次到达 4 号城市时以 6 的价格卖出水晶球,赚取的旅费数为 5。
现在给出 n 个城市的水晶球价格,m 条道路的信息(每条道路所连接的两个城市的编号
以及该条道路的通行情况)。请你告诉阿龙,他最多能赚取多少旅费。
INPUT:
输入文件名为 trade.in。
第一行包含 2 个正整数 n 和 m,中间用一个空格隔开,分别表示城市的数目和道路的
数目。
第二行 n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 n 个城
市的商品价格。
接下来 m 行,每行有 3 个正整数,x,y,z,每两个整数之间用一个空格隔开。如果 z=1,
表示这条道路是城市 x 到城市 y 之间的单向道路;如果 z=2,表示这条道路为城市 x 和城市
y 之间的双向道路。
5 5
4 3 5 6 1
1 2 1
1 4 1
2 3 2
3 5 1
4 5 2
OUTPUT:
输出文件 trade.out 共 1 行,包含 1 个整数,表示最多能赚取的旅费。如果没有进行贸易,
则输出 0。
5
思路:
用双向SPFA建一个反向图和一个正向图。
正向图用SPFA算出最小值。
反向图算出最大值。
然后AC!!!
CPP:
1 #include<iostream> 2 #include<string> 3 #include<algorithm> 4 #include<cstring> 5 #include<cstdio> 6 #include<cmath> 7 #include<iomanip> 8 #include<queue> 9 #include<vector> 10 #include<cstring> 11 using namespace std; 12 const int maxn=500010; 13 int m,n; 14 int prize[maxn],len=0,linkk[maxn],len2=0,linkk2[maxn]; 15 int pr[maxn],pr2[maxn]; 16 int vis[maxn],q[maxn]; 17 struct node 18 { 19 int x,y,v; 20 }e[maxn*2],e2[maxn*2]; 21 22 void init(int xx,int yy) 23 { 24 e[++len].y=linkk[xx];linkk[xx]=len; 25 e[len].x=yy;e[len].v=1; 26 } 27 28 void init2(int xx,int yy) 29 { 30 e2[++len2].y=linkk2[xx];linkk2[xx]=len2; 31 e2[len2].x=yy;e2[len2].v=1; 32 } 33 34 void SPFA() 35 { 36 memset(vis,0,sizeof(vis)); 37 memset(q,0,sizeof(q)); 38 memset(pr,10,sizeof(pr)); 39 int head=0,tail=1; 40 vis[1]=1;q[tail]=1; 41 while(head<=tail) 42 { 43 int tn=q[++head];vis[tn]=0; 44 int te=linkk[tn]; 45 if(prize[tn]<pr[tn]) 46 pr[tn]=prize[tn]; 47 for(int i=te;i;i=e[i].y) 48 { 49 int tmp=e[i].x; 50 if(pr[tmp]>prize[tn]) 51 { 52 pr[tmp]=prize[tn]; 53 if(vis[tmp]==0) 54 { 55 q[++tail]=tmp; 56 vis[tmp]=1; 57 if(tail>500001) 58 tail=1; 59 } 60 } 61 } 62 if(head>500001) 63 head=1; 64 } 65 } 66 67 void spfa() 68 { 69 memset(vis,0,sizeof(vis)); 70 memset(q,0,sizeof(q)); 71 memset(pr2,0,sizeof(pr2)); 72 int head=0,tail=1; 73 vis[n]=1;q[tail]=n; 74 while(head<=tail) 75 { 76 int tn=q[++head];vis[tn]=0; 77 int te=linkk2[tn]; 78 if(prize[tn]>pr2[tn]) 79 pr2[tn]=prize[tn]; 80 for(int i=te;i;i=e2[i].y) 81 { 82 int tmp=e2[i].x; 83 if(prize[tn]>pr2[tmp]) 84 { 85 pr2[tmp]=prize[tn]; 86 if(vis[tmp]==0) 87 { 88 q[++tail]=tmp; 89 vis[tmp]=1; 90 if(tail>500001) 91 tail=1; 92 } 93 } 94 } 95 if(head>500001) 96 head=1; 97 } 98 } 99 100 int main() 101 { 102 /*freopen("2.in","r",stdin); 103 freopen("2.out","w",stdout);*/ 104 //ios::sync_with_stdio(false); 105 cin>>n>>m; 106 for(int i=1;i<=n;i++) 107 { 108 cin>>prize[i]; 109 } 110 for(int i=1;i<=m;i++) 111 { 112 int a,b,c; 113 cin>>a>>b>>c; 114 if(c==1) 115 { 116 init(a,b); 117 init2(b,a); 118 } 119 if(c==2) 120 { 121 init(a,b); 122 init(b,a); 123 init2(a,b); 124 init2(b,a); 125 } 126 } 127 SPFA(); 128 spfa(); 129 int maxx=0; 130 for(int i=1;i<=n;i++) 131 { 132 if(pr2[i]-pr[i]>maxx) 133 maxx=pr2[i]-pr[i]; 134 } 135 /*for(int i=1;i<=n;i++) 136 cout<<pr[i]<<" "<<pr2[i]<<endl;*/ 137 cout<<maxx<<endl; 138 return 0; 139 }