浅谈快速求逆序对

  所谓的逆序对,就是指在数组A中,满足i<j且A[i]>=A[j]的数(这里等号不进行严格规定,笔者采用可以取等)。根据定义,立刻可以获得平方级的朴素算法,即对于每个数,枚举其后的数字,若存在比它小的数,则ans++;但很显然,这种算法不能满足现在实际运用(主要是竞赛)中的一些需求,于是O(NlgN)的算法应运而生。今天主要谈基于树状数组的优化。

  对于树状数组,本文假设读者已经掌握。

  首先,我们要求的是逆序对,那么答案只与各个数之间的大小关系有关,而与数本身是什么数字无关,因此对于值取得比较大的数组,我们对其进行离散化(离散化在此处就是指:用数字排序后的序号代替数字本身,这样数的范围就大大减小了)。然后维护一个树状数组C,C[i]表示A数组中等于i的数的个数(当然i为偶数时,那就表示某段和)。

  显然,一开始C数组是空的,我们按A数组的顺序,顺序插入A[1]至A[n],插入A[i]时,逆序对个数增加(i-数值小于等于i的数的个数)个,由于C是树状数组,数值小于等于i的数的个数可以在O(lgN)的时间内求出,插入A[i]后,更新C数组即可。

  逆序对个数为什么会增长(i-数值小于等于i的数的个数)个呢?因为若A中没有逆序对,则(i-数值小于等于i的数的个数)始终为0,因为有了逆序对,才使得其增长。

  从中看出,利用树状数组(有时是线段树,有时利用单调队列)可将某些特定问题的时间中的"N"的一维降为"lgN"的一维,至于这些问题都有哪些共性,笔者正在总结。现在临近NOIP考试了,希望大家都RP++!

转载于:https://www.cnblogs.com/kliner/archive/2012/11/07/2758606.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值