最小二乘法拟合数据c语言,用C语言实现的曲线拟合的最小二乘法

本文介绍使用C语言实现的最小二乘法曲线拟合方法,详细阐述了如何通过该方法来找到最佳拟合直线,并给出了具体的实验步骤与代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《用C语言实现的曲线拟合的最小二乘法》由会员分享,可在线阅读,更多相关《用C语言实现的曲线拟合的最小二乘法(10页珍藏版)》请在人人文库网上搜索。

1、实验名称:曲线拟合的最小二乘法实验目的了解曲线拟合的最小二乘法实验类型设计型实验环境Windows XP TC实验内容相关知识:已知Ca,b中函数f(x)的一组实验数据(xi,yi)(i=0,1,m),其中yi=f(xi)。设是Ca,b上线性无关函数族。在中找函数f(x) 曲线拟合的最小二乘解,其法方程(组)为: 其中,k=0,1,n特别是,求函数f(x) 曲线拟合的线性最小二乘解的计算公式为:数据结构:两个一维数组或一个二维数组算法设计:(略)实验用例: 已知函数y=f(x)的一张表:x0102030405060708090y6867.166.465.664.661.861.060.860.。

2、460试验要求:利用曲线拟合的线性最小二乘法求被逼近函数f(x)在点x=55处的近似值,并画出实验数据和直线。编写代码:#include#include #includedouble qiuhe1(double a102,int p)int i;double y;y=0;for(i=0;i1;i-)if(i!=4)ci=n%10+48; n=n/10; c11=0;x1=x;setbkcolor(7); setcolor(14);setlinestyle(0,0,3);drawpoly(3,arw);drawpoly(3,arw1);line(120,240,520,240);line(320。

3、,40,320,440);x=0;setcolor(2);setlinestyle(0,0,1);line(0+320),(int)(240-nihe(a,0)*q),(90+320),(int)(240-nihe(a,90)*q);setcolor(3);outtextxy(320,30,Y);outtextxy(310,245,O);outtextxy(525,240,X);outtextxy(x1+330),(240-nihe(a,x1)-10),c);settextstyle(4,0,4);outtextxy(450,400,Nihe.);for(i=0;i=9;i+)putpixel。

4、(ai0+320),(240-ai1*q),11);setcolor(4);setlinestyle(1,0,1);line(x1+320),(240-nihe(a,x1)*q)-80),(x1+320),(240-nihe(a,x1)*q)+120);getch();closegraph();实验结果(测试用例、实验结果)实验总结与心得通过本次实验,对曲线拟合的最小二乘法有了更深刻的了解!概念最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= (x)。原理原理部分由个人根据互联网上的资料进行总结,希望对大家能有用给定数据点pi(x。

5、i,yi),其中i=1,2,m。求近似曲线y= (x)。并且使得近似曲线与y=f(x)的偏差最小。近似曲线在点pi处的偏差i= (xi)-y,i=1,2,.,m。常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。推导过程:1.设拟合多项式为:2.各点到这条曲线的距离之和,即偏差平方和如下:3.为了求得符合条件的a值,对等式右边求ai偏导数,因而我们得到了:.4.将等式左边进行一下化简,然后应该可以得到下面的等式:.5.把这些等式表示成矩阵的形式,就可以得到下面的矩阵:。

6、6.将这个范德蒙得矩阵化简后可得到:7.也就是说X*A=Y,那么A = (X*X)-1*X*Y,便得到了系数矩阵A,同时,我们也就得到了拟合曲线。实现运行前提:1. Python运行环境与编辑环境;2. Matplotlib.pyplot图形库,可用于快速绘制2D图表,与matlab中的plot命令类似,而且用法也基本相同。代码:pythonview plaincopy1. #coding=utf-82. 3. 4. 作者:JairusChan5. 程序:多项式曲线拟合算法6. 7. importmatplotlib.pyplotasplt8. importmath9. importnumpy。

7、10. importrandom11. 12. fig=plt.figure()13. ax=fig.add_subplot(111)14. 15. #阶数为9阶16. order=917. 18. #生成曲线上的各个点19. x=numpy.arange(-1,1,0.02)20. y=(a*a-1)*(a*a-1)*(a*a-1)+0.5)*numpy.sin(a*2)forainx21. #ax.plot(x,y,color=r,linestyle=-,marker=)22. #,label=(a*a-1)*(a*a-1)*(a*a-1)+0.523. 24. #生成的曲线上的各个点偏移。

8、一下,并放入到xa,ya中去25. i=026. xa=27. ya=28. forxxinx:29. yy=yi30. d=float(random.randint(60,140)/10031. #ax.plot(xx*d,yy*d,color=m,linestyle=,marker=.)32. i+=133. xa.append(xx*d)34. ya.append(yy*d)35. 36. foriinrange(0,5):37. xx=float(random.randint(-100,100)/10038. yy=float(random.randint(-60,60)/10039.。

9、 xa.append(xx)40. ya.append(yy)41. 42. ax.plot(xa,ya,color=m,linestyle=,marker=.)43. 44. 45. #进行曲线拟合46. matA=47. foriinrange(0,order+1):48. matA1=49. forjinrange(0,order+1):50. tx=0.051. forkinrange(0,len(xa):52. dx=1.053. forlinrange(0,j+i):54. dx=dx*xak55. tx+=dx56. matA1.append(tx)57. matA.append。

10、(matA1)58. 59. #print(len(xa)60. #print(matA00)61. matA=numpy.array(matA)62. 63. matB=64. foriinrange(0,order+1):65. ty=0.066. forkinrange(0,len(xa):67. dy=1.068. forlinrange(0,i):69. dy=dy*xak70. ty+=yak*dy71. matB.append(ty)72. 73. matB=numpy.array(matB)74. 75. matAA=numpy.linalg.solve(matA,matB)7。

11、6. 77. #画出拟合后的曲线78. #print(matAA)79. xxa=numpy.arange(-1,1.06,0.01)80. yya=81. foriinrange(0,len(xxa):82. yy=0.083. forjinrange(0,order+1):84. dy=1.085. forkinrange(0,j):86. dy*=xxai87. dy*=matAAj88. yy+=dy89. yya.append(yy)90. ax.plot(xxa,yya,color=g,linestyle=-,marker=)91. 92. ax.legend()93. plt.show(。

<think>嗯,用户想要了解如何在C语言实现最小二乘法拟合曲线。我得先回忆一下最小二乘法的原理。最小二乘法是一种数学优化技术,通过最小化误差的平方和来找到最佳拟合曲线。通常用于线性回归,但也可以扩展到非线性模型。 首先,用户可能需要知道基本的线性拟合,也就是拟合一条直线。这时候模型是y = a + bx。需要计算系数a和b。根据最小二乘法的公式,需要计算x和y的均值,以及一些中间量,比如Σx²、Σxy等。然后解正规方程得到a和b的表达式。 接下来,要考虑如何在C语言实现这个计算。可能需要用户输入数据点的数量n,然后输入n个x和y的值。然后计算这些中间值,比如sum_x, sum_y, sum_x2, sum_xy。之后代入公式计算a和b的值。 不过,用户提到的是“曲线”,可能不只是直线。这时候可能需要多项式拟合。比如二次曲线y = a + bx + cx²。这时候正规方程会变成求解三个未知数a、b、c的情况。这时候需要构建一个矩阵方程,比如X^T X β = X^T Y,其中X是设计矩阵,β是系数向量。这时候可能需要用到矩阵运算,比如矩阵乘法和求逆,或者使用高斯消元法解线性方程组。 在C语言实现矩阵运算可能会有点复杂,尤其是动态分配内存和处理多维数组。需要考虑如何构造矩阵,如何实现矩阵乘法,以及如何解线性方程组。如果用户不熟悉这些,可能需要给出一个具体的例子,比如二次多项式拟合,并展示具体的代码步骤。 另外,需要注意数值稳定性。当数据点很多或者矩阵条件数较大时,直接求逆可能会引入误差,可能需要使用更稳定的算法,比如LU分解或者使用迭代方法。但对于简单的应用,尤其是教学示例,可能直接使用高斯消元法就足够了。 还需要考虑输入输出的问题。用户可能需要从文件或标准输入读取数据,然后输出拟合后的系数。在代码中,可能需要使用动态数组或者固定大小的数组,这取决于用户的需求。如果数据量较大,动态分配会更灵活。 可能还需要处理错误情况,比如当矩阵不可逆时,或者数据点不足导致无法拟合的情况。这时候程序应该给出错误提示,而不是崩溃。 最后,测试代码的正确性也很重要。可以提供一个示例数据集,比如已知斜率和截距的数据点,运行代码后检查输出是否符合预期。 总结一下,步骤可能是: 1. 确定拟合的多项式阶数,比如线性、二次等。 2. 收集数据点。 3. 构建正规方程。 4. 解线性方程组得到系数。 5. 输出结果并验证。 在C语言中,需要处理数组、循环计算各项的和,然后构造矩阵,解方程。可能需要用嵌套循环来计算矩阵元素,以及实现高斯消元法来解方程。</think>最小二乘法拟合曲线的C语言实现可分为以下步骤: --- ### **一、数学原理** 设拟合多项式为: $$ y = a_0 + a_1x + a_2x^2 + \dots + a_mx^m $$ 目标:通过N个数据点$(x_i, y_i)$,求系数$a_0, a_1, \dots, a_m$,使误差平方和最小。 **正规方程组**: $$ \begin{cases} \sum y_i = a_0N + a_1\sum x_i + a_2\sum x_i^2 + \dots + a_m\sum x_i^m \\ \sum x_iy_i = a_0\sum x_i + a_1\sum x_i^2 + \dots + a_m\sum x_i^{m+1} \\ \vdots \\ \sum x_i^m y_i = a_0\sum x_i^m + a_1\sum x_i^{m+1} + \dots + a_m\sum x_i^{2m} \end{cases} $$ --- ### **二、C语言实现步骤** #### **1. 定义变量与输入** ```c #include <stdio.h> #include <math.h> #define MAX_DEGREE 3 // 最高阶数(例如3次多项式) #define MAX_POINTS 100 // 最大数据点数 int main() { int n, m; // n: 数据点数,m: 多项式阶数 double x[MAX_POINTS], y[MAX_POINTS]; double X[2*MAX_DEGREE + 1] = {0}; // 存储Σx^i (i=0~2m) double Y[MAX_DEGREE + 1] = {0}; // 存储Σy*x^i (i=0~m) double A[MAX_DEGREE + 1][MAX_DEGREE + 2]; // 增广矩阵 // 输入数据... } ``` #### **2. 计算Σx^k和Σy*x^k** ```c printf("输入数据点数n和多项式阶数m:"); scanf("%d %d", &n, &m); for(int i=0; i<n; i++) { printf("输入第%d个点(x, y): ", i+1); scanf("%lf %lf", &x[i], &y[i]); for(int j=0; j<=2*m; j++) { X[j] += pow(x[i], j); // 计算Σx^0到Σx^{2m} } for(int j=0; j<=m; j++) { Y[j] += y[i] * pow(x[i], j); // 计算Σy, Σy*x,...,Σy*x^m } } ``` #### **3. 构建增广矩阵** ```c for(int i=0; i<=m; i++) { for(int j=0; j<=m; j++) { A[i][j] = X[i + j]; // 系数矩阵元素Σx^{i+j} } A[i][m+1] = Y[i]; // 右侧常数项Σy*x^i } ``` #### **4. 高斯消元法解线性方程组** ```c // 高斯消元核心代码(略,需实现部分选主元、消元、回代) ``` --- ### **三、完整代码示例(二次拟合)** ```c #include <stdio.h> #include <math.h> #define N 5 // 数据点数量 int main() { double x[N] = {1, 2, 3, 4, 5}; double y[N] = {1.2, 1.9, 3.2, 4.1, 5.0}; double sum_x = 0, sum_x2 = 0, sum_x3 = 0, sum_x4 = 0; double sum_y = 0, sum_xy = 0, sum_x2y = 0; // 计算各Σ项 for(int i=0; i<N; i++) { sum_x += x[i]; sum_x2 += pow(x[i], 2); sum_x3 += pow(x[i], 3); sum_x4 += pow(x[i], 4); sum_y += y[i]; sum_xy += x[i] * y[i]; sum_x2y += pow(x[i], 2) * y[i]; } // 构建增广矩阵 double A[3][4] = { {N, sum_x, sum_x2, sum_y}, {sum_x, sum_x2, sum_x3, sum_xy}, {sum_x2, sum_x3, sum_x4, sum_x2y} }; // 高斯消元法求解(此处简化为手动计算) double det = A[0][0]*(A[1][1]*A[2][2] - A[1][2]*A[2][1]) - A[0][1]*(A[1][0]*A[2][2] - A[1][2]*A[2][0]) + A[0][2]*(A[1][0]*A[2][1] - A[1][1]*A[2][0]); if(fabs(det) < 1e-6) { printf("矩阵奇异,无法求解\n"); return 1; } double a0 = (sum_y*(sum_x2*sum_x4 - sum_x3*sum_x3) - sum_xy*(sum_x*sum_x4 - sum_x2*sum_x3) + sum_x2y*(sum_x*sum_x3 - sum_x2*sum_x2)) / det; double a1 = (A[0][0]*(sum_xy*sum_x4 - sum_x3*sum_x2y) - A[0][1]*(sum_y*sum_x4 - sum_x2*sum_x2y) + A[0][2]*(sum_y*sum_x3 - sum_xy*sum_x2)) / det; double a2 = (A[0][0]*(sum_x2*sum_x2y - sum_x3*sum_xy) - A[0][1]*(sum_x*sum_x2y - sum_x3*sum_y) + A[0][2]*(sum_x*sum_xy - sum_x2*sum_y)) / det; printf("拟合方程: y = %.3f + %.3fx + %.3fx²\n", a0, a1, a2); return 0; } ``` --- ### **四、关键注意事项** 1. **数据输入**:可通过文件读取或手动输入 2. **多项式阶数选择**:阶数过高会导致过拟合,建议通过残差分析确定 3. **数值稳定性**:高阶拟合需注意矩阵条件数,必要时使用QR分解等算法 4. **扩展性**:代码可封装为函数,支持任意阶多项式拟合 实际工程中推荐使用现成库(如GSL),但手动实现有助于深入理解算法原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值